Abstract
The paper proposes an alternative control design for the chaotic Lorenz system based on neural networks. The controller is a feedforward neural network trained by a model reference technique. Implementation of the control design requires system states for feedback, while in most of practical applications only the system output is available. To overcome this problem, a nonlinear observer is used to estimate the states of the system. Simulation results have illustrated the feasibility and effectiveness of the proposed observer-based neural network controller.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ott, E.F., Grebogi, C., Yorke, J.A.: Controlling Chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)
Mahboobi, S.H., Shahrokhi, M., Pishkenari, H.N.: Observer-based Control Design for Three Well-known Chaotic Systems. Chaos, Solitons and Fractals 29, 381–392 (2006)
Peng, C.-C., Chen, C.-L.: Robust Chaotic Control of Lorenz System by Backstepping Design. Chaos, Solitons and Fractals 37, 598–608 (2008)
Chen, F., Chen, L., Zhang, W.: Stabilization of Parameters Perturbation Chaotic System via Adaptive Backstepping Technique. Applied Mathematics and Computation 200, 101–109 (2008)
Guo, H., Lin, S., Liu, J.: A Radial Basis Function Sliding Mode Controller for Chaotic Lorenz System. Physics Letters A 351, 257–261 (2006)
Nazzal, J.M., Natsheh, A.N.: Chaos Control using Sliding-mode Theory. Chaos, Solitons and Fractals 33, 695–702 (2007)
Shen, L., Wang, M.: Adaptive Control of Chaotic Systems Based on a Single Layer Neural Network. Physics Letters A 368, 379–382 (2007)
Yau, H.-T., Shieh, C.-S.: Chaos Synchronization using Fuzzy Logic Controller. Nonlinear Analysis: Real World Applications 9, 1800–1810 (2008)
Suykens, J.A.K., Curran, P.F., Vandewalle, J.: Robust Nonlinear H-inf Syschonization of Chaotic Lur’s Systems. IEEE Trans. Circuits Syst. I. 44, 891–904 (1997)
Gambino, G., Lombardo, M.C., Sammartino, M.: Global Linear Feedback Control for the Generalized Lorenz System. Chaos, Solitons and Fractals 29, 829–837 (2006)
White, D.A., Sofge, D.A.: Handbook of Intelligent Control. Van Nostrand Reinhold, New York (1992)
Kuntanapreeda, S., Gundersen, R.W., Fullmer, R.R.: Neural Network Model refernce Control of Nonlinear Systems. In: IJCNN International Joint Conference on Neural Networks, Baltimore, Maryland, vol. 2, pp. II94 - II9 (1992)
Thau, F.E.: Observing the States of Nonlinear Dynamic Systems. Int. L. Control 17, 471–479 (1973)
Starkov, K., Esquer, M.: Construction of Observers for Nonlinear Systems based on the Solution of Thau Inequality. In: 14th ICSE Conference, Coventry, UK, vol. 2, pp. 508–512 (2000)
Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall International, New Jersey (1999)
Wasserman, P.D.: Advanced Methods in Neural Computing. Van Nostrand Reinhold, New York (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kuntanapreeda, S. (2008). An Observer-Based Neural Network Controller for Chaotic Lorenz System. In: Kang, L., Cai, Z., Yan, X., Liu, Y. (eds) Advances in Computation and Intelligence. ISICA 2008. Lecture Notes in Computer Science, vol 5370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92137-0_67
Download citation
DOI: https://doi.org/10.1007/978-3-540-92137-0_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92136-3
Online ISBN: 978-3-540-92137-0
eBook Packages: Computer ScienceComputer Science (R0)