Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stochastic Submodular Maximization

  • Conference paper
Internet and Network Economics (WINE 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5385))

Included in the following conference series:

Abstract

We study stochastic submodular maximization problem with respect to a cardinality constraint. Our model can capture the effect of uncertainty in different problems, such as cascade effects in social networks, capital budgeting, sensor placement, etc. We study non-adaptive and adaptive policies and give optimal constant approximation algorithms for both cases. We also bound the adaptivity gap of the problem between 1.21 and 1.59.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmed, S., Atamtürk, A.: Maximizing a class of submodular utility functions. Research Report BCOL.08.02, IEOR, University of California-Berkeley (March 2008)

    Google Scholar 

  3. Chan, C., Farias, V.: Stochastic depletion problems: Effective myopic policies for a class of dynamic optimization problems (manuscript, 2008)

    Google Scholar 

  4. Cornuejols, G., Fisher, M., Nemhauser, G.: Location of bank accounts to optimize float. Management Science 23, 789–810 (1977)

    Article  MATH  Google Scholar 

  5. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack problem: The benefit of adaptivity. In: FOCS, pp. 208–217 (2004)

    Google Scholar 

  6. Feige, U.: A threshold of ln for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: FOCS, pp. 461–471 (2007)

    Google Scholar 

  8. Goemans, M.X., Vondrák, J.: Stochastic covering and adaptivity. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 532–543. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.) KDD, pp. 137–146. ACM, New York (2003)

    Google Scholar 

  10. Kleinberg, J.M., Papadimitriou, C.H., Raghavan, P.: Segmentation problems. J. ACM 51(2), 263–280 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krause, A., Guestrin, C.: Near-optimal nonmyopic value of information in models. In: AAAI, pp. 324–331 (2005)

    Google Scholar 

  12. Krause, A., Guestrin, C.: Near-optimal observation selection using submodular functions. In: AAAI, pp. 1650–1654. AAAI Press, Menlo Park (2007)

    Google Scholar 

  13. Mehrez, A., Sinuany-Stern, Z.: Resource allocation to interrelated risky projects using a multiattribute utility function. Management Science (29), 439–490 (1983)

    Article  MATH  Google Scholar 

  14. Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: Approx, pp. 128–134 (2007)

    Google Scholar 

  15. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of the approximations for maximizing submodular set functions. Mathematical Programming 14, 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Streeter, M., Golovin, D.: An online algorithm for maximizing submodular functions. Tech Report CMU-CS-07-171 (2008)

    Google Scholar 

  17. Topkis, D.M.: Minimizing a submodular function on a lattice. Operations Research 26(2), 305–321 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vondrák, J.: Submodularity in combinatorial optimization. PhD thesis. Charles University, Prague (2007)

    Google Scholar 

  19. Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: STOC (2008)

    Google Scholar 

  20. Weingartner, H.: Mathematical Programming and the Analysis of Capital Budgeting Problems. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

  21. Weingartner, H.: Capital budgeting of interrelated projects: Survey and synthesis. Management Science (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asadpour, A., Nazerzadeh, H., Saberi, A. (2008). Stochastic Submodular Maximization. In: Papadimitriou, C., Zhang, S. (eds) Internet and Network Economics. WINE 2008. Lecture Notes in Computer Science, vol 5385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92185-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92185-1_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92184-4

  • Online ISBN: 978-3-540-92185-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics