Abstract
We study stochastic submodular maximization problem with respect to a cardinality constraint. Our model can capture the effect of uncertainty in different problems, such as cascade effects in social networks, capital budgeting, sensor placement, etc. We study non-adaptive and adaptive policies and give optimal constant approximation algorithms for both cases. We also bound the adaptivity gap of the problem between 1.21 and 1.59.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)
Ahmed, S., Atamtürk, A.: Maximizing a class of submodular utility functions. Research Report BCOL.08.02, IEOR, University of California-Berkeley (March 2008)
Chan, C., Farias, V.: Stochastic depletion problems: Effective myopic policies for a class of dynamic optimization problems (manuscript, 2008)
Cornuejols, G., Fisher, M., Nemhauser, G.: Location of bank accounts to optimize float. Management Science 23, 789–810 (1977)
Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack problem: The benefit of adaptivity. In: FOCS, pp. 208–217 (2004)
Feige, U.: A threshold of ln for approximating set cover. J. ACM 45(4), 634–652 (1998)
Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: FOCS, pp. 461–471 (2007)
Goemans, M.X., Vondrák, J.: Stochastic covering and adaptivity. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 532–543. Springer, Heidelberg (2006)
Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.) KDD, pp. 137–146. ACM, New York (2003)
Kleinberg, J.M., Papadimitriou, C.H., Raghavan, P.: Segmentation problems. J. ACM 51(2), 263–280 (2004)
Krause, A., Guestrin, C.: Near-optimal nonmyopic value of information in models. In: AAAI, pp. 324–331 (2005)
Krause, A., Guestrin, C.: Near-optimal observation selection using submodular functions. In: AAAI, pp. 1650–1654. AAAI Press, Menlo Park (2007)
Mehrez, A., Sinuany-Stern, Z.: Resource allocation to interrelated risky projects using a multiattribute utility function. Management Science (29), 439–490 (1983)
Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: Approx, pp. 128–134 (2007)
Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of the approximations for maximizing submodular set functions. Mathematical Programming 14, 265–294 (1978)
Streeter, M., Golovin, D.: An online algorithm for maximizing submodular functions. Tech Report CMU-CS-07-171 (2008)
Topkis, D.M.: Minimizing a submodular function on a lattice. Operations Research 26(2), 305–321 (1978)
Vondrák, J.: Submodularity in combinatorial optimization. PhD thesis. Charles University, Prague (2007)
Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: STOC (2008)
Weingartner, H.: Mathematical Programming and the Analysis of Capital Budgeting Problems. Prentice-Hall, Englewood Cliffs (1963)
Weingartner, H.: Capital budgeting of interrelated projects: Survey and synthesis. Management Science (1966)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Asadpour, A., Nazerzadeh, H., Saberi, A. (2008). Stochastic Submodular Maximization. In: Papadimitriou, C., Zhang, S. (eds) Internet and Network Economics. WINE 2008. Lecture Notes in Computer Science, vol 5385. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92185-1_53
Download citation
DOI: https://doi.org/10.1007/978-3-540-92185-1_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92184-4
Online ISBN: 978-3-540-92185-1
eBook Packages: Computer ScienceComputer Science (R0)