Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Upward Straight-Line Embeddings of Directed Graphs into Point Sets

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5344))

Included in the following conference series:

  • 752 Accesses

Abstract

In this paper we consider the problem of characterizing the directed graphs that admit an upward straight-line embedding into every point set in convex or in general position. In particular, we show that no biconnected directed graph admits an upward straight-line embedding into every point set in convex position, and we provide a characterization of the Hamiltonian directed graphs that admit upward straight-line embeddings into every point set in general or in convex position. We also describe how to construct upward straight-line embeddings of directed paths into convex point sets and we prove that for directed trees such embeddings do not always exist. Further, we investigate the related problem of upward simultaneous embedding without mapping, proving that deciding whether two directed graphs admit an upward simultaneous embedding without mapping is \(\cal NP\)-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bose, P.: On embedding an outer-planar graph in a point set. Computat. Geom. Th. Appl. 23(3), 303–312 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a point set. J. Graph Algorithms Appl. 1(2), 1–15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Computat. Geom. Th. Appl. 36(2), 117–130 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algorithms Appl. 10(2), 353–366 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar graphs. Sigact News 20(4), 83–86 (1989)

    Article  Google Scholar 

  6. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61, 175–198 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display of planar upward drawings. Disc. & Computat. Geometry 7, 381–401 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Estrella-Balderrama, A., Frati, F., Kobourov, S.: Upward straight-line embeddings of directed graphs into point sets. Tech. Report RT-DIA-133-2007, University of Roma Tre (2008), http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rt/2008-133.pdf

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  11. Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A.: Computing upward topological book embeddings of upward planar digraphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 172–183. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified positions. The American Mathematical Monthly 98, 165–166 (1991)

    Article  Google Scholar 

  13. Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schnyder, W.: Embedding planar graphs on the grid. In: SODA 1990, pp. 138–148 (1990)

    Google Scholar 

  16. Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Estrella-Balderrama, A., Frati, F., Kobourov, S.G. (2008). Upward Straight-Line Embeddings of Directed Graphs into Point Sets. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2008. Lecture Notes in Computer Science, vol 5344. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92248-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92248-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92247-6

  • Online ISBN: 978-3-540-92248-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics