Abstract
In this paper we consider the problem of characterizing the directed graphs that admit an upward straight-line embedding into every point set in convex or in general position. In particular, we show that no biconnected directed graph admits an upward straight-line embedding into every point set in convex position, and we provide a characterization of the Hamiltonian directed graphs that admit upward straight-line embeddings into every point set in general or in convex position. We also describe how to construct upward straight-line embeddings of directed paths into convex point sets and we prove that for directed trees such embeddings do not always exist. Further, we investigate the related problem of upward simultaneous embedding without mapping, proving that deciding whether two directed graphs admit an upward simultaneous embedding without mapping is \(\cal NP\)-hard.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bose, P.: On embedding an outer-planar graph in a point set. Computat. Geom. Th. Appl. 23(3), 303–312 (2002)
Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a point set. J. Graph Algorithms Appl. 1(2), 1–15 (1997)
Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Computat. Geom. Th. Appl. 36(2), 117–130 (2007)
Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algorithms Appl. 10(2), 353–366 (2006)
Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar graphs. Sigact News 20(4), 83–86 (1989)
de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)
Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61, 175–198 (1988)
Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display of planar upward drawings. Disc. & Computat. Geometry 7, 381–401 (1992)
Estrella-Balderrama, A., Frati, F., Kobourov, S.: Upward straight-line embeddings of directed graphs into point sets. Tech. Report RT-DIA-133-2007, University of Roma Tre (2008), http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rt/2008-133.pdf
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)
Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A.: Computing upward topological book embeddings of upward planar digraphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 172–183. Springer, Heidelberg (2007)
Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified positions. The American Mathematical Monthly 98, 165–166 (1991)
Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)
Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)
Schnyder, W.: Embedding planar graphs on the grid. In: SODA 1990, pp. 138–148 (1990)
Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Estrella-Balderrama, A., Frati, F., Kobourov, S.G. (2008). Upward Straight-Line Embeddings of Directed Graphs into Point Sets. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2008. Lecture Notes in Computer Science, vol 5344. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92248-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-92248-3_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92247-6
Online ISBN: 978-3-540-92248-3
eBook Packages: Computer ScienceComputer Science (R0)