Abstract
Building on previous work [Bonifaci et al., Minimizing flow time in the wireless gathering problem, STACS 2008] we study data gathering in a wireless network through multi-hop communication with the objective to minimize the average flow time of a data packet. We show that for any the problem is NP-hard to approximate within a factor better than
, where m is the number of data packets. On the other hand, we give an online polynomial time algorithm that we analyze using resource augmentation. We show that the algorithm has average flow time bounded by that of an optimal solution when the clock speed of the algorithm is increased by a factor of five. As a byproduct of the analysis we obtain a 5-approximation algorithm for the problem of minimizing the average completion time of data packets.
Research supported by EU FET-project under contract no. FP6-021235-2 ARRIVAL and by the EU COST-action 293 GRAAL.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop radio networks: an exponential gap between determinism and randomization. Journal of Computer and Systems Sciences 45(1), 104–126 (1992)
Bar-Yehuda, R., Israeli, A., Itai, A.: Multiple communication in multihop radio networks. SIAM Journal on Computing 22(4), 875–887 (1993)
Bender, M.A., Chakrabarti, S., Muthukrishnan, S.: Flow and stretch metrics for scheduling continuous job streams. In: Proc. 9th Symp. on Discrete Algorithms, pp. 270–279. SIAM, Philadelphia (1998)
Bermond, J., Galtier, J., Klasing, R., Morales, N., Pérennes, S.: Hardness and approximation of gathering in static radio networks. Parallel Processing Letters 16(2), 165–183 (2006)
Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: An approximation algorithm for the wireless gathering problem. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 328–338. Springer, Heidelberg (2006)
Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: Minimizing flow time in the wireless gathering problem. In: Proc. 25th Symp. on Theoretical Aspects of Computer Science, pp. 109–120. IBFI Dagstuhl (2008)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)
Chan, H.-L., Lam, T.W., Liu, K.-S.: Extra unit-speed machines are almost as powerful as speedy machines for competitive flow time scheduling. In: Proc. 17th Symp. on Discrete Algorithms, pp. 334–343. SIAM, Philadelphia (2006)
Chekuri, C., Goel, A., Khanna, S., Kumar, A.: Multi-processor scheduling to minimize flow time with epsilon resource augmentation. In: Proc. 36th Symp. on Theory of Computing, pp. 363–372. ACM, New York (2004)
Duckworth, W., Manlove, D., Zito, M.: On the approximability of the maximum induced matching problem. Journal of Discrete Algorithms 3(1), 79–91 (2005)
Florens, C., Franceschetti, M., McEliece, R.J.: Lower bounds on data collection time in sensory networks. IEEE Journal on Selected Areas in Communications 22, 1110–1120 (2004)
Gargano, L., Rescigno, A.A.: Optimally fast data gathering in sensor networks. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 399–411. Springer, Heidelberg (2006)
Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of the ACM 47(4), 617–643 (2000)
Korteweg, P.: Online gathering algorithms for wireless networks. PhD thesis, Technische Universiteit Eindhoven (2008)
Anil Kumar, V.S., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: End-to-end packet-scheduling in wireless ad-hoc networks. In: Munro, J.I. (ed.) Proc. 15th Symp. on Discrete Algorithms, pp. 1021–1030. SIAM, Philadelphia (2004)
Lageweg, B.J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Computer-aided complexity classification of combinatorial problems. Communications of the ACM 25, 817–822 (1982)
Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. Journal of Computer and Systems Sciences 73(6), 875–891 (2007)
Leung, J.Y.-T. (ed.): Handbook of Scheduling. CRC Press, Boca Raton (2004)
McCullough, J., Torng, E.: SRPT optimally utilizes faster machines to minimize flow time. In: Munro, J.I. (ed.) Proc. 15th Symp. on Discrete Algorithms, pp. 350–358. SIAM, Philadelphia (2004)
Pelc, A.: Broadcasting in radio networks. In: Handbook of Wireless Networks and Mobile Computing, pp. 509–528. Wiley and Sons, Chichester (2002)
Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. In: Proc. 20th Int. Parallel and Distributed Processing Symposium. IEEE, Los Alamitos (2006)
Schrage, L.: A proof of the optimality of the shortest remaining processing time discipline. Operations Research 16(3), 687–690 (1968)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L. (2008). Minimizing Average Flow Time in Sensor Data Gathering. In: Fekete, S.P. (eds) Algorithmic Aspects of Wireless Sensor Networks. ALGOSENSORS 2008. Lecture Notes in Computer Science, vol 5389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92862-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-92862-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92861-4
Online ISBN: 978-3-540-92862-1
eBook Packages: Computer ScienceComputer Science (R0)