Abstract
Low level features of multimedia content often have limited power to discriminate a document’s relevance to a query. This motivated researchers to investigate other types of features. In this paper, we investigated four groups of features: low-level object features, behavioural features, vocabulary features, and window-based vocabulary features, to predict the relevance of shots in video retrieval. Search logs from two user studies formed the basis of our evaluation. The experimental results show that the window-based vocabulary features performed best. The behavioural features also showed a promising result, which is useful when the vocabulary features are not available. We also discuss the performance of classifiers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating user behavior information. In: SIGIR 2006: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 19–26. ACM Press, New York (2006)
Bekkerman, R., McCallum, A., Huang, G.: Automatic categorization of email into folders: Bechmark experiments on enron and sri corpora. Technical report, Department of Computer Science. University of Massachusetts, Amherst (2005)
Bermejo, P., Gámez, J., Puerta, J.: On incremental wrapper-based attribute selection: experimental analysis of the relevance criteria. In: IPMU 2008: Proceedings of the 12th Intl. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (2008)
Flores, M.J., Gámez, J., Mateo, J.L.: Mining the esrom: A study of breeding value classification in manchego sheep by means of attribute selection and construction. Computers and Electronics in Agriculture 60(2), 167–177 (2007)
Freitas, A.A.: Understanding the crucial role of attributeinteraction in data mining. Artif. Intell. Rev. 16, 177–199 (2001)
Geng, X., Liu, T.-Y., Qin, T., Li, H.: Feature selection for ranking. In: SIGIR 2007: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 407–414. ACM, New York (2007)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)
Howarth, P., Rüger, S.M.: Evaluation of texture features for content-based image retrieval. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 326–334. Springer, Heidelberg (2004)
Hu, Y.-J.: Constructive induction: covering attribute spectrum In Feature Extraction, Construction and Selection: a data mining perspective. Kluwer, Dordrecht (1998)
Liu, H., Motoda, H.: Feature Extraction Construction and Selection: a data mining perspective. Kluwer Academic Publishers, Dordrecht (1998)
McCallum, A., Nigam, K.: A comparison of event models for naive bayes text classification. In: AAAI/ICML 1998 Workshop on Learning for Text Categorization, pp. 41–48 (1998)
Otero, F., Silva, M., Freitas, A., NIevola, J.: Genetic programming for attribute construction in data mining. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610. Springer, Heidelberg (2003)
Porter, M.F.: An algorithm for suffix stripping, pp. 313–316 (1997)
Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.: Okapi at TREC-3. In: Proceedings of the Third Text REtrieval Conference (TREC 1994), Gaithersburg, USA (1994)
Ruiz, R., Riquelme, J.C., Aguilar-Ruiz, J.S.: Incremental wrapper-based gene selection from microarray data for cancer classification. Pattern Recogn. 39, 2383–2392 (2006)
Sikora, T.: The mpeg-7 visual standard for content description-an overview.  11(6), 696–702 (June 2001)
Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: MIR 2006: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, pp. 321–330. ACM Press, New York (2006)
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)
Sparck Jones, K.: A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28(1), 11–21 (1972)
Villa, R., Gildea, N., Jose, J.M.: Facetbrowser: a user interface for complex search tasks. In: ACM Multimedia 2008 (in press, 2008)
Villa, R., Gildea, N., Jose, J.M.: Joint conference on digital libraries. In: A Study of Awareness in Multimedia Search, pp. 221–230 (June 2008)
Yan, R., Hauptmann, A.G.: Co-retrieval: A boosted reranking approach for video retrieval. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 60–69. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bermejo, P., Joho, H., Jose, J.M., Villa, R. (2009). Comparison of Feature Construction Methods for Video Relevance Prediction. In: Huet, B., Smeaton, A., Mayer-Patel, K., Avrithis, Y. (eds) Advances in Multimedia Modeling . MMM 2009. Lecture Notes in Computer Science, vol 5371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92892-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-92892-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92891-1
Online ISBN: 978-3-540-92892-8
eBook Packages: Computer ScienceComputer Science (R0)