Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Planar k-Means Problem is NP-Hard

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5431))

Included in the following conference series:

Abstract

In the k-means problem, we are given a finite set S of points in \(\Re^m\), and integer k ≥ 1, and we want to find k points (centers) so as to minimize the sum of the square of the Euclidean distance of each point in S to its nearest center. We show that this well-known problem is NP-hard even for instances in the plane, answering an open question posed by Dasgupta [6].

Part of the work by the third author was done when visiting The Institute of Mathematical Sciences, Chennai. He was also supported by NSF CAREER award CCR 0237431.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-Hardness of Euclidean Sum-of-Squares Clustering. Technical Report G-2008-33, Les Cahiers du GERAD (to appear in Machine Learning) (April 2008)

    Google Scholar 

  2. Allender, E., Datta, S., Roy, S.: The directed planar reachability problem. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 238–249. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algorithm, with an application to the k-means method. In: Proc. IEEE Symp. Foundations of Computer Science (2006)

    Google Scholar 

  4. Arthur, D., Vassilvitskii, S.: How slow is the k-means method? In: Proc. Symp. on Comput. Geom. (2006)

    Google Scholar 

  5. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. In: Proc. ACM-SIAM Symp. Discrete Algorithms (2007)

    Google Scholar 

  6. Dasgupta, S.: The hardness of k-means clustering. Technical Report CS2007-0890, University of California, San Diego (2007)

    Google Scholar 

  7. de la Vega, F., Karpinski, M., Kenyon, C.: Approximation schemes for clustering problems. In: Proc. ACM Symp. Theory of Computing, pp. 50–58 (2003)

    Google Scholar 

  8. Drineas, P., Friexe, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the singular value decomposition. Machine Learning 56, 9–33 (2004)

    Article  MATH  Google Scholar 

  9. Gibson, M., Kanade, G., Krohn, E., Pirwani, I., Varadarajan, K.: On clustering to minimize the sum of radii. In: Proc. ACM-SIAM Symp. Discrete Algorithms (2008)

    Google Scholar 

  10. Har-Peled, S., Sadri, B.: How fast is the k-means method? In: Proc. ACM-SIAM Symp. Discrete Algorithms, pp. 877–885 (2005)

    Google Scholar 

  11. Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and randomization to variance-based clustering. In: Proc. Annual Symp. on Comput. Geom., pp. 332–339 (1994)

    Google Scholar 

  12. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: A local search approximation algorithm for k-means clustering. Comput. Geom. 28, 89–112 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1 + ε) approximation algorithm for k-means clustering in any dimensions. In: Proc. IEEE Symp. Foundations of Computer Science, pp. 454–462 (2004)

    Google Scholar 

  14. Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Proc. 21st Ann. IEEE Symp. Foundations of Computer Science, pp. 270–281 (1980)

    Google Scholar 

  15. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lloyd, S.: Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 129–136 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Megiddo, N., Supowit, K.: On the complexity of some common geometric location problems. SIAM J. Comput. 13, 182–196 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ostrovsky, R., Rabani, Y., Schulman, L., Swamy, C.: The effectiveness of Lloyd-type methods for the k-means problem. In: Proc. IEEE Symp. Foundations of Computer Science (2006)

    Google Scholar 

  19. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Transactions on Computers 30, 135–140 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mahajan, M., Nimbhorkar, P., Varadarajan, K. (2009). The Planar k-Means Problem is NP-Hard. In: Das, S., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2009. Lecture Notes in Computer Science, vol 5431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00202-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00202-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00201-4

  • Online ISBN: 978-3-642-00202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics