Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generating Uniform Incremental Grids on SO(3) Using the Hopf Fibration

  • Chapter
Algorithmic Foundation of Robotics VIII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

Abstract

The problem of generating uniform deterministic samples over the rotation group, SO(3), is fundamental to many fields, such as computational structural biology, robotics, computer graphics, astrophysics. We present the best-known method to date for constructing incremental, deterministic grids on SO(3); it provides the: 1) lowest metric distortion for grid neighbor edges, 2) optimal dispersion-reduction with each additional sample, 3) explicit neighborhood structure, and 4) equivolumetric partition of SO(3) by the grid cells. We also demonstrate the use of the sequence on motion planning problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chirikjian, G.S., Kyatkin, A.B.: Engineering Applications of Noncommutative Harmonic Analysis. CRC Press, Boca Raton (2001)

    MATH  Google Scholar 

  2. Diaconis, P., Shahshahani, M.: The subgroup algorithm for generating uniform random variables. Prob. in Eng. and Info. Sci. 1, 15–32 (1987)

    Article  MATH  Google Scholar 

  3. Fishman, G.F.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, Berlin (1996)

    MATH  Google Scholar 

  4. Górski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K., Reinecke, M., Bartelmann, M.: HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. arXiv:astro-ph/0409513 622, 759–771 (April 2005)

    Google Scholar 

  5. Hardin, D.P., Saff, E.B.: Discretizing manifolds via minimum energy points. Notices of the American Mathematical Society 51(10), 1186–1194 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Kavraki, L.E., Svestka, P., Latombe, J., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. & Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  7. Kuffner, J.: Effective sampling and distance metrics for 3D rigid body path planning. In: IEEE Int. Conf. Robot. & Autom. IEEE, Los Alamitos (2004)

    Google Scholar 

  8. Lindemann, S.R., LaValle, S.M.: Incremental Low-Discrepancy lattice methods for motion planning. In: IEEE Int’l Conf. on Robotics and Automation, pp. 2920–2927 (2003)

    Google Scholar 

  9. Lindemann, S.R., Yershova, A., LaValle, S.M.: Incremental grid sampling strategies in robotics. In: Workshop on the Algorithmic Foundations of Robotics (2004)

    Google Scholar 

  10. Mitchell, J.C.: Sampling rotation groups by successive orthogonal images. SIAM J. Sci. Comput. 30(1), 525–547 (2007)

    Article  MathSciNet  Google Scholar 

  11. Niederreiter, H.: Random Number Generation and Quasi-Monte-Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    MATH  Google Scholar 

  12. Ramamoorthy, S., Rajagopal, R., Ruan, Q., Wenzel, L.: Low-discrepancy curves and efficient coverage of space. In: Proc. of the Workshop on Algorithmic Foundations of Robotics (2006)

    Google Scholar 

  13. Rote, G., Tichy, R.F.: Spherical dispersion with applications to polygonal approximation of the curves. Anz. Österreich. Akad. Wiss. Math.-Natur, Kl. Abt. II 132, 3–10 (1995)

    MATH  MathSciNet  Google Scholar 

  14. Rovira, J., Wonka, P., Castro, F., Sbert, M.: Point sampling with uniformly distributed lines. In: Point-Based Graphics, 2005. Eurographics/IEEE VGTC Symposium Proc. (June 2005)

    Google Scholar 

  15. Shoemake, K.: Animating rotation with quaternion curves. In: Proc. of the 12th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press, New York (1985)

    Google Scholar 

  16. Shoemake, K.: Uniform random rotations. In: Kirk, D. (ed.) Graphics Gems III, pp. 124–132. Academic Press, London (1992)

    Google Scholar 

  17. Sternberg, M.J.E., Moont, G.: Modelling protein-protein and protein-DNA docking. In: Lengauer, T. (ed.) Bioinformatics – From Genomes to Drugs, pp. 361–404. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  18. Sun, X., Chen, Z.: Spherical basis functions and uniform distribution of points on spheres. J. Approx. Theory 151(2), 186–207 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wagner, G.: On a new method for constructing good point sets on spheres. Journal of Discrete and Computational Geometry 9(1), 119–129 (1993)

    Google Scholar 

  20. Wales, D., Doye, J.: Global optimization by Basin-Hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101 (1997)

    Google Scholar 

  21. Yan, A.K., Langmead, C.J., Donald, B.R.: A Probability-Based similarity measure for saupe alignment tensors with applications to residual dipolar couplings in NMR structural biology. Int. J. Robot. Res. 24(2-3), 162–182 (2005)

    Article  Google Scholar 

  22. Yershova, A., LaValle, S.M.: Deterministic sampling methods for spheres and SO(3). In: Proc. IEEE International Conference on Robotics and Automation (2004)

    Google Scholar 

  23. Zyczkowski, K., Kus, M.: Random unitary matrices. J. Phys. A 27(12), 4235–4245 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yershova, A., LaValle, S.M., Mitchell, J.C. (2009). Generating Uniform Incremental Grids on SO(3) Using the Hopf Fibration. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics