Abstract
We propose a general security definition for cryptographic quantum protocols that implement classical non-reactive two-party tasks. The definition is expressed in terms of simple quantum- information-theoretic conditions which must be satisfied by the protocol to be secure. The conditions are uniquely determined by the ideal functionality \(\mathcal{F}\) defining the cryptographic task to be implemented. We then show the following composition result. If quantum protocols π 1,...,π ℓ securely implement ideal functionalities \(\mathcal{F}_1,\ldots,\mathcal{F}_\ell\) according to our security definition, then any purely classical two-party protocol, which makes sequential calls to \(\mathcal{F}_1,\ldots,\mathcal{F}_\ell\), is equally secure as the protocol obtained by replacing the calls to \(\mathcal{F}_1,\ldots,\mathcal{F}_\ell\) with the respective quantum protocols π 1,...,π ℓ. Hence, our approach yields the minimal security requirements which are strong enough for the typical use of quantum protocols as subroutines within larger classical schemes. Finally, we show that recently proposed quantum protocols for secure identification and oblivious transfer in the bounded-quantum-storage model satisfy our security definition, and thus compose in the above sense.
The original version of the book was revised: The copyright line was incorrect. The Erratum to the book is available at DOI: 10.1007/978-3-642-00457-5_36
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation with (only) a strict honest majority. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 249–260 (2005)
Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The universal composable security of quantum key distribution. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 386–406. Springer, Heidelberg (2005)
Ben-Or, M., Mayers, D.: General security definition and composability for quantum and classical protocols (September 2004), http://arxive.org/abs/quant-ph/0409062
Colbeck, R.: The impossibility of secure two-party classical computation (August 2007), http://arxiv.org/abs/0708.2843
Crépeau, C., Savvides, G., Schaffner, C., Wullschleger, J.: Information-theoretic conditions for two-party secure function evaluation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 538–554. Springer, Heidelberg (2006)
Crépeau, C., Wullschleger, J.: Statistical security conditions for two-party secure function evaluation. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 86–99. Springer, Heidelberg (2008)
Damgård, I.B., Fehr, S., Renner, R., Salvail, L., Schaffner, C.: A tight high-order entropic quantum uncertainty relation with applications. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 360–378. Springer, Heidelberg (2007)
Damgård, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 449–458 (2005), http://arxiv.org/abs/quant-ph/0508222v2
Damgård, I.B., Fehr, S., Salvail, L., Schaffner, C.: Secure identification and QKD in the bounded-quantum-storage model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 342–359. Springer, Heidelberg (2007)
Damgård, I.B., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded-quantum-storage model. SIAM Journal on Computing 37(6), 1865–1890 (2008)
Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment (2008), http://arxiv.org/abs/0804.1059
Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. II. Cambridge University Press, Cambridge (2004)
Gottesman, D., Lo, H.-K.: Proof of security of quantum key distribution with two-way classical communications. IEEE Transactions on Information Theory 49(2), 457–475 (2003), http://arxiv.org/abs/quant-ph/0105121
J.: v. d. Graaf. Towards a formal definition of security for quantum protocols. PhD thesis, Université de Montréal (1997)
Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 20–31 (1988)
Kitaev, A.: Quantum coin-flipping. In: QIP 2003 (2003); A review of this technique can be found, http://lightlike.com/~carlosm/publ
Koenig, R., Renner, R., Bariska, A., Maurer, U.: Small accessible quantum information does not imply security. Physical Review Letters 98(140502) (April 2007)
Lo, H.-K.: Insecurity of quantum secure computations. Physical Review A 56(2), 1154–1162 (1997)
Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Physical Review Letters 78(17), 3410–3413 (1997)
Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Physical Review Letters 78(17), 3414–3417 (1997)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zürich (Switzerland) (September 2005), http://arxiv.org/abs/quant-ph/0512258
Renner, R., König, R.: Universally composable privacy amplification against quantum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005)
Salvail, L.: Quantum bit commitment from a physical assumption. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 338–353. Springer, Heidelberg (1998)
Salvail, L., Sotáková, M., Schaffner, C.: On the power of two-party quantum cryptography (submitted, 2008)
Smith, A.: Multi-party quantum computation. Master’s thesis, MIT (2001)
Unruh, D.: Simulatable security for quantum protocols (2004), http://arxiv.org/abs/quant-ph/0409125
Wehner, S., Schaffner, C., Terhal, B.M.: Cryptography from noisy storage. Physical Review Letters 100(22), 220502 (2008)
Wehner, S., Wullschleger, J.: Composable security in the bounded-quantum-storage model. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 604–615. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fehr, S., Schaffner, C. (2009). Composing Quantum Protocols in a Classical Environment. In: Reingold, O. (eds) Theory of Cryptography. TCC 2009. Lecture Notes in Computer Science, vol 5444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00457-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-00457-5_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00456-8
Online ISBN: 978-3-642-00457-5
eBook Packages: Computer ScienceComputer Science (R0)