Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Three-Dimensional Kneed Bipedal Walking: A Hybrid Geometric Approach

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5469))

Included in the following conference series:

Abstract

A 3D biped with knees and a hip is naturally modeled as a nontrivial hybrid system; impacts occur when the knee strikes and when the foot impacts the ground causing a switch in the dynamics governing the system. Through a variant of geometric reduction—termed functional Routhian reduction—we can reduce the dynamics on each domain of this hybrid system to obtain a planar equivalent biped. Using preexisting techniques for obtaining walking gaits for 2D bipeds, and utilizing the decoupling effect afforded by the reduction process, we design control strategies that result in stable walking gaits for the 3D biped. That is, the main result of this paper is a control law that results in 3D bipedal walking obtained through stable walking gaits for the equivalent 2D biped.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ames, A.D., Gregg, R.D.: Stably extending two-dimensional bipedal walking to three dimensions. In: 26th American Control Conference, New York, NY (2007)

    Google Scholar 

  2. Ames, A.D., Gregg, R.D., Spong, M.W.: A geometric approach to three-dimensional hipped bipedal robotic walking. In: 45th Conference on Decision and Control, San Diago, CA (2007)

    Google Scholar 

  3. Ames, A.D., Gregg, R.D., Wendel, E.D.B., Sastry, S.: Towards the geometric reduction of controlled three-dimensional robotic bipedal walkers. In: 3rd Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (LHMNLC 2006), Nagoya, Japan (2006)

    Google Scholar 

  4. Hsu Chen, V.F.: Passive dynamic walking with knees: A point foot model. Master’s thesis, MIT (2007)

    Google Scholar 

  5. Collins, S.H., Wisse, M., Ruina, A.: A 3-d passive dynamic walking robot with two legs and knees. International Journal of Robotics Research 20, 607–615 (2001)

    Article  Google Scholar 

  6. Goswami, A., Thuilot, B., Espiau, B.: Compass-like biped robot part I: Stability and bifurcation of passive gaits. Rapport de recherche de l’INRIA (1996)

    Google Scholar 

  7. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control 46(1), 51–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guobiao, S., Zefran, M.: Underactuated dynamic three-dimensional bipedal walking. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 854–859 (2006)

    Google Scholar 

  9. Kuo, A.D.: Stabilization of lateral motion in passive dynamic walking. International Journal of Robotics Research 18(9), 917–930 (1999)

    Article  Google Scholar 

  10. Lygeros, J., Johansson, K.H., Simic, S., Zhang, J., Sastry, S.: Dynamical properties of hybrid automata. IEEE Transactions on Automatic Control 48, 2–17 (2003)

    Article  MathSciNet  Google Scholar 

  11. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, vol. 17. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  12. McGeer, T.: Passive dynamic walking. International Journal of Robotics Research 9(2), 62–82 (1990)

    Article  Google Scholar 

  13. McGeer, T.: Passive walking with knees. In: IEEE International Conference on Robotics and Automation, Cincinnati, OH (1990)

    Google Scholar 

  14. Morris, B., Grizzle, J.W.: A restricted Poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: Application to bipedal robots. In: 44th IEEE Conference on Decision and Control and European Control Conference, Seville, Spain (2005)

    Google Scholar 

  15. Parker, T.S., Chua, L.O.: Practical numerical algorithms for chaotic systems. Springer, New York (1989)

    Book  MATH  Google Scholar 

  16. Sastry, S.: Nonlinear Systems: Analysis, Stability and Control. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  17. Spong, M.W., Bullo, F.: Controlled symmetries and passive walking. IEEE Transactions on Automatic Control 50(7), 1025–1031 (2005)

    Article  MathSciNet  Google Scholar 

  18. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor & Francis/CRC (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ames, A.D., Sinnet, R.W., Wendel, E.D.B. (2009). Three-Dimensional Kneed Bipedal Walking: A Hybrid Geometric Approach. In: Majumdar, R., Tabuada, P. (eds) Hybrid Systems: Computation and Control. HSCC 2009. Lecture Notes in Computer Science, vol 5469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00602-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00602-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00601-2

  • Online ISBN: 978-3-642-00602-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics