Abstract
A 3D biped with knees and a hip is naturally modeled as a nontrivial hybrid system; impacts occur when the knee strikes and when the foot impacts the ground causing a switch in the dynamics governing the system. Through a variant of geometric reduction—termed functional Routhian reduction—we can reduce the dynamics on each domain of this hybrid system to obtain a planar equivalent biped. Using preexisting techniques for obtaining walking gaits for 2D bipeds, and utilizing the decoupling effect afforded by the reduction process, we design control strategies that result in stable walking gaits for the 3D biped. That is, the main result of this paper is a control law that results in 3D bipedal walking obtained through stable walking gaits for the equivalent 2D biped.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ames, A.D., Gregg, R.D.: Stably extending two-dimensional bipedal walking to three dimensions. In: 26th American Control Conference, New York, NY (2007)
Ames, A.D., Gregg, R.D., Spong, M.W.: A geometric approach to three-dimensional hipped bipedal robotic walking. In: 45th Conference on Decision and Control, San Diago, CA (2007)
Ames, A.D., Gregg, R.D., Wendel, E.D.B., Sastry, S.: Towards the geometric reduction of controlled three-dimensional robotic bipedal walkers. In: 3rd Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (LHMNLC 2006), Nagoya, Japan (2006)
Hsu Chen, V.F.: Passive dynamic walking with knees: A point foot model. Master’s thesis, MIT (2007)
Collins, S.H., Wisse, M., Ruina, A.: A 3-d passive dynamic walking robot with two legs and knees. International Journal of Robotics Research 20, 607–615 (2001)
Goswami, A., Thuilot, B., Espiau, B.: Compass-like biped robot part I: Stability and bifurcation of passive gaits. Rapport de recherche de l’INRIA (1996)
Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control 46(1), 51–64 (2001)
Guobiao, S., Zefran, M.: Underactuated dynamic three-dimensional bipedal walking. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 854–859 (2006)
Kuo, A.D.: Stabilization of lateral motion in passive dynamic walking. International Journal of Robotics Research 18(9), 917–930 (1999)
Lygeros, J., Johansson, K.H., Simic, S., Zhang, J., Sastry, S.: Dynamical properties of hybrid automata. IEEE Transactions on Automatic Control 48, 2–17 (2003)
Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, vol. 17. Springer, Heidelberg (1999)
McGeer, T.: Passive dynamic walking. International Journal of Robotics Research 9(2), 62–82 (1990)
McGeer, T.: Passive walking with knees. In: IEEE International Conference on Robotics and Automation, Cincinnati, OH (1990)
Morris, B., Grizzle, J.W.: A restricted Poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: Application to bipedal robots. In: 44th IEEE Conference on Decision and Control and European Control Conference, Seville, Spain (2005)
Parker, T.S., Chua, L.O.: Practical numerical algorithms for chaotic systems. Springer, New York (1989)
Sastry, S.: Nonlinear Systems: Analysis, Stability and Control. Springer, Heidelberg (1999)
Spong, M.W., Bullo, F.: Controlled symmetries and passive walking. IEEE Transactions on Automatic Control 50(7), 1025–1031 (2005)
Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor & Francis/CRC (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ames, A.D., Sinnet, R.W., Wendel, E.D.B. (2009). Three-Dimensional Kneed Bipedal Walking: A Hybrid Geometric Approach. In: Majumdar, R., Tabuada, P. (eds) Hybrid Systems: Computation and Control. HSCC 2009. Lecture Notes in Computer Science, vol 5469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00602-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-00602-9_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00601-2
Online ISBN: 978-3-642-00602-9
eBook Packages: Computer ScienceComputer Science (R0)