Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deciphering Drug Action and Escape Pathways: An Example on Nasopharyngeal Carcinoma

  • Conference paper
Bioinformatics and Computational Biology (BICoB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5462))

Included in the following conference series:

  • 1149 Accesses

Abstract

We have designed a drug pathway identification system, which we called Drug Pathway Decipherer, to generate hypotheses on drug treatment responsive pathway. Decipherer takes in both pre- and post- treatment gene expression data, and evaluates known biological pathways against the data. We applied Decipherer to two gene expression datasets of human nasopharyngeal carcinoma treated with CYC202. Results show that the identified RAS-ERK pathway and PI3K-NFκB-IAP pathway are closely associated with treatment outcome. Decipherer is implemented in Java, and it is available together with supplementary material at http://www.comp.nus.edu.sg/~wongls/projects/drug-pathway

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvi, A., Austen, B., Weston, V., et al.: A novel CDK inhibitor, CYC202 (R-roscovitine), overcomes the defect in p53-independent apoptosis in B-CLL by down-regulation of genes involved in transcription regulation and survival. al 105, 4484–4491 (2005)

    CAS  Google Scholar 

  2. Doniger, S.W., Salomonis, N., Dahlquist, K.D., et al.: MAPPFinder: Using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biology 4(1), R7 (2003)

    Article  Google Scholar 

  3. Draghici, S., Khatri, P., Tarca, A., et al.: A systems biology approach for pathway level analysis. Genome Research 17(10), 1537–1545 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guo, Z., Li, Y., Gong, X., et al.: Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network. Bioinformatics 23, 2121–2128 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. Herrington, H.: Controlling the false discovery rate in multiple hypothesis testing, http://www.unt.edu/benchmarks/archives/2002/april02/rss.htm

  6. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(suppl. 1), S233–S240 (2002)

    Article  Google Scholar 

  7. Kanehisa, M., Goto, S., Kawashima, S., Nakaya, A.: The KEGG database at GenomeNet. Nucleic Acids Research 30(1), 42–46 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lacrima, K., Valentini, A., Lambertini, C., et al.: In vitro activity of cyclin-dependent kinase inhibitor CYC202 (Seliciclib, R-roscovitine) in mantle cell lymphomas. Annals of Oncology 16, 1169–1176 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Lam, L., Pickeral, O., Peng, A., et al.: Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biology 2(10), research004 (2001)

    Google Scholar 

  10. McClue, S., Blake, D., Clarke, R., et al.: In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-ROSCOVITINE). International Journal of Cancer 102, 463–468 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Meijer, L., Borgne, A., Mulner, O., et al.: Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinase cdc2, cdk2 and cdk5. European Journal of Biochemistry 243, 527–536 (1997)

    Article  CAS  PubMed  Google Scholar 

  12. Pathmanathan, R., Prasad, U., Sadler, R., et al.: Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. The New England Journal of Medicine 333, 693–698 (1995)

    Article  CAS  PubMed  Google Scholar 

  13. Pui, C., Evans, W.: Acute lymphoblastic leukemia. New England Journal of Medicine 339, 605–615 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. Raje, N., Kumar, S., Hideshima, T., et al.: Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of MCL1 in multiple myeloma. Blood 106, 1042–1047 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi, W., Bastianutto, C., Li, A., et al.: Multiple dysregulated pathways in nasopharyngeal carcinoma revealed by gene expression profiling. International Journal of Cancer 119, 2467–2475 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Smith, P., Yue, E.: Inhibitors of Cyclin-dependent Kinases as Anti-tumor Agents. Taylor and Francis Group, Abington (2006)

    Book  Google Scholar 

  17. Soh, D., Dong, D., Guo, Y., Wong, L.: Enabling more sophisticated gene expression analysis for understanding diseases and optimizing treatments. ACM SIGKDD Explorations 9, 3–14 (2007)

    Article  Google Scholar 

  18. Subramanian, A., Tamayo, P., Mootha, V., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Science of the United States of America 102, 15545–15550 (2005)

    Article  CAS  Google Scholar 

  19. Sultanem, K., Shu, H.K., Xia, P., et al.: Three-dimensional intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: the University of California, San Francisco experience. International journal of radiation oncology, biology, physics 48, 711–722 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. Tan, W., Dong, D., Loh, M., et al.: Pathway determinants of 5-Fluorouracil activity. Poster. In: 20th EORTC-NCI-AACR symposium on Molecular targets and Cancer Therapeutics (2008)

    Google Scholar 

  21. Tsao, S., Tramoutanis, G., Dawson, C., et al.: The significance of LMP1 expression in nasopharyngeal carcinoma. Cancer Biology 12, 473–487 (2002)

    Article  CAS  Google Scholar 

  22. Whittaker, S., Walton, M., Garrett, M., Workman, P.: The cyclin-dependent kinase inhibitor CYC202 (R-Roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of cyclin D1, and activates the mitogen-activated protein kinase pathway. Cancer Research 64, 262–272 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Yeoh, E., Ross, M., Shurtleff, S., et al.: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133–143 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Yu, M., Yuan, J.: Epidemiology of nasopharyngeal carcinoma. Seminars in Cancer Biology 12, 421–429 (2002)

    Article  PubMed  Google Scholar 

  25. Zeeberg, B.R., Feng, W., Wang, G., et al.: GoMiner: A resource for biological interpretation of genomic and proteomic data. Genome Biology 4(4), R28 (2003)

    Article  Google Scholar 

  26. Zien, A., Kuffner, R., Zimmer, R., Lengauer, T.: Analysis of gene expression data with pathway scores. Proceedings of International Conference on Intelligent Systems for Molecular Biology 8, 407–417 (2000)

    CAS  Google Scholar 

  27. Pathway Ingenuity database, http://www.ingenuity.com/

  28. WikiPathways, http://www.wikipathways.org/index.php/WikiPathways

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, D., Cui, CY., Mow, B., Wong, L. (2009). Deciphering Drug Action and Escape Pathways: An Example on Nasopharyngeal Carcinoma. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics