Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

fMRI Activation Detection by MultiScale Hidden Markov Model

  • Conference paper
Bioinformatics and Computational Biology (BICoB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5462))

Included in the following conference series:

Abstract

This paper considers detection of functional magnetic resonance images (fMRIs), that is, to decide active and nonactive regions of human brain from fMRIs. A novel two-step approach is put forward that incorporates spatial correlation information and is amenable to analysis and optimization. First, a new multi-scale image segmentation algorithm is proposed to decompose the correlation image into several different regions, each of which is of homogeneous statistical behavior. Second, each region will be classified independently as active or inactive using existing pixel-wise test methods. The image segmentation consists of two procedures: edge detection followed by label estimation. To deduce the presence or absence of an edge from continuous data, two fundamental assumptions of our algorithm are 1) each wavelet coefficient is described by a 2-state Gaussian Mixture Model (GMM); 2) across scales, each state is caused by its parent state, hence the name of multiscale hidden Markov model (MHMM). The states of Markov chain are unknown (”hidden”) and represent the presence (state 1) or absence (state 0) of edges. Using this interpretation, the edge detection problem boils down to the posterior state estimation given obervation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nan, F., Nowak, R.D.: Generalized likelihood Ratio Detection for fMRI using complex data. IEEE Trans. Medical Imaging 18(4), 320–329 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Nan, F.: Novel Detection Methods for functional magnetic resonance imaging, Ph. D. thesis, Dept. of ECE, Michigan State University (May 2000)

    Google Scholar 

  3. Bandettini, P.A., Jesmanowicz, A., Wong, E.C., Hyde, J.S.: Processing Strategies for time course data sets in functional MRI of the human brain. Magnetic Resonance Medicine 30, 161–173 (1993)

    Article  CAS  Google Scholar 

  4. Genovese, C.R.: A time-course model for fMRI data. In: Proc. Intl. Symp. Magn. Reson. Med. Meeting, p. 1669 (1997)

    Google Scholar 

  5. Forman, S., Cohen, J.C., Fitzgerald, M., Eddy, W.F., Mintun, M.A., Noll, D.C.: Imporoved assesment of significant change in fucntional magnetic resoance fMRI: Use of cluster size threshold. Magnetic Resonace Medicine 33, 636–647 (1995)

    Article  CAS  Google Scholar 

  6. Golay, X., Kollias, S., Stoll, G., Meier, D., Valavanis, A., Boesiger, P.: A new correlation -based fuzzy logic clustering algorithm for fMRI. Magnetic Resonace, Medicine 40, 249–260 (1998)

    Article  CAS  Google Scholar 

  7. Goutte, C., Toft, P., Rostrup, E., Nielsen, F.A., Kai Hansen, L.: On clustering fMRI time series. NeuroImage 9, 298–310 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.-P., Kindermann, S.S., Bell, A.J., Sejnowski, T.J.: Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping 6, 160–188 (1998)

    Article  CAS  PubMed  Google Scholar 

  9. Frank, L.R., Buxton, R.B., Wong, E.C.: Probabilistic analysis and functional magnetic resonance imaging data. Magn. Reson. Med. 39, 132–148 (1998)

    Article  CAS  PubMed  Google Scholar 

  10. Kim, T., Al-Dayeh, L., Patel, P., Singh, M.: Bayesian processing for fMRI. In: Proc. Intl. Soc. Magn. Reson. Med. Sidney, Australia (1998)

    Google Scholar 

  11. Descombes, X., Kruggel, F., von Cramon, D.Y.: Spatial-temporal fMRI analysis using Markov random fields. IEEE Trans. Medical Imaging 17(6), 1028–1039 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. Bouman, C., Shapiro, M.: A multiscale random field model for Bayesian image segmentation. IEEE Trans. Image Processing 3(2), 162–177 (1994)

    Article  CAS  Google Scholar 

  13. Aston, J.A.D., Gunn, R.N., Hinz, R., Turkheimer, F.E.: Wavelet variance components in image space for spatiotemporal neuroimaging data. NeuroImage 25, 159–168 (2005)

    Article  PubMed  Google Scholar 

  14. Long, C., Brown, E.N., Manoach, D., Solo, V.: Spatiotemporal wavelet analysis for functional MRI. NeuroImage 23, 500–516 (2004)

    Article  PubMed  Google Scholar 

  15. Hossein-Zadeh, G., Soltanian-Zadeh, H., Ardekani, B.A.: Multiresolution fMRI activation detection using translation invariant wavelet transform and statistical analysis based on resampling. IEEE Trans. Medical Imaging 22(3) (March 2003)

    Google Scholar 

  16. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and Bayesian restoration of images. IEEE Trans. Patt. Anal. Mach. Intell. 6(11), 721–741 (1984)

    Article  CAS  Google Scholar 

  17. Perez, P., Heitz, F.: Restriction of Markov radnom field on a graph and multiresolution statistical image modeling. IEEE Trans. Information Theory 42(1), 180–190 (1996)

    Article  Google Scholar 

  18. Malfait, M., Roose, D.: Wavelet-based image denoising using a Markov random field a priori model. IEEE Trans. Image Processing 6(4), 549–565 (1997)

    Article  CAS  Google Scholar 

  19. Crouse, M.S., Nowak, R.D., Baraniuk, R.G.: wavelet based statistical signal processing using hidden Markov models. IEEE Trans. Signal Processing 46(4), 886–902 (1998)

    Article  Google Scholar 

  20. Nowak, R.: Multiscale Hidden Markov Models for Bayesian Image Analysis. In: Vidakovic, B., Muller, P. (eds.) Bayesian Interference in Wavelet Based Models. Springer, New York (1999)

    Google Scholar 

  21. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257–285 (1989)

    Article  Google Scholar 

  22. Derin, H., Elliott, H.: Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans. Patt. Anal. Mach. Intell. 9(1), 39–55 (1987)

    Article  CAS  Google Scholar 

  23. Luettgen, M.R., Karl, W.C., Willsky, A.S., Tenney, R.R.: Multiscale representations of Markov Random fields. IEEE Trans. Signal Processing 41(12), 3377–3396 (1993)

    Article  Google Scholar 

  24. Forsgate, C.H., Krim, H., Irving, W.W., Karl, W.C., Willsky, A.S.: Multiscale segmentation and anomaly enhancement of SAR imagery. IEEE Trans. Image Processing 6(1), 7–20 (1997)

    Article  Google Scholar 

  25. Deller, J., Proakis, J., Hanson, J.: Discrete Time Processing of Speech Signals. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  26. Rioul, O., Vetterli, M.: Wavelets and signal processing. IEEE Signal Processing Magazine 10, 14–38 (1991)

    Article  Google Scholar 

  27. Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice Hall PTR, Englewood Cliffs (1995)

    Google Scholar 

  28. Srinath, M.D., Rajasekaran, P.K., Viswanathan, R.: Introduction to Statistical Signal Processing with Applications. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  29. Irving, W.W., Tsitsiklis, J.N.: Some properties of optimal threshods in decentralized detection. IEEE Trans. Automatic Control 39(4), 835–838 (1994)

    Article  Google Scholar 

  30. Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Trans. Patt. Anal. Mach. Intell. 14(7), 710–732 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nan, F., Wang, Y., Ma, X. (2009). fMRI Activation Detection by MultiScale Hidden Markov Model. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics