Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Bayesian Approach to High-Throughput Biological Model Generation

  • Conference paper
Bioinformatics and Computational Biology (BICoB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5462))

Included in the following conference series:

  • 1130 Accesses

Abstract

With the availability of hundreds and soon thousands of complete genomes, the construction of genome-scale metabolic models for these organisms has attracted much attention. Manual work still dominates the process of model generation, however, and leads to the huge gap between the number of complete genomes and genome-scale metabolic models. The challenge in constructing genome-scale models from existing databases is that usually such a directly extracted model is incomplete and contains network holes. Network holes occur when a network is disconnected and certain metabolites cannot be produced or consumed. In order to construct a valid metabolic model, network holes need to be filled by introducing candidate reactions into the network. As a step toward the high-throughput generation of biological models, we propose a Bayesian approach to improving draft genome-scale metabolic models. A collection of 23 types of biological and topological evidence is extracted from the SEED [1], KEGG [2], and BiGG [3] databases. Based on this evidence, we create 23 individual predictors using Bayesian approaches. To combine these individual predictors and unify their predictive results, we build an ensemble of individual predictors on majority vote and four classifiers: naive Bayes classifier, Bayesian network, multilayer perceptron network and AdaBoost. A set of experiments is performed to train and test individual predictors and integrative mechanisms of single predictors and to evaluate the performance of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J.V., Chuang, H.Y., Cohoon, M., de Crécy–Lagard, V., Diaz, N., Disz, T., Edwards, R., Fonstein, M., Frank, E.D., Gerdes, S., Glass, E.M., Goesmann, A., Hanson, A., Iwata–Reuyl, D., Jensen, R., Jamshidi, N., Krause, L., Kubal, M., Larsen, N., Linke, B., McHardy, A.C., Meyer, F., Neuweger, H., Olsen, G., Olson, R., Osterman, A., Portnoy, V., Pusch, G.D., Rodionov, D.A., Rückert, C., Steiner, J., Stevens, R., Thiele, I., Vassieva, O., Ye, Y., Zagnitko, O., Vonstein, V.: IThe Subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33(17), 5691–5702 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y.: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, 480–484 (2008)

    Article  Google Scholar 

  3. BiGG: A Biochemical Genetic and Genomic Database of Large Scale Metabolic Reconstructions, http://bigg.ucsd.edu/

  4. CellDesigner, http://www.systems-biology.org/cd/

  5. Weka: Data mining software in Java, http://www.cs.waikato.ac.nz/~ml/weka/

  6. Feist, A.M., Herrgard, M.J., Thiele, I., Reed, J.L., Palsson, B.O.: Reconstruction of biochemical networks in microbial organisms. Nat. Rev. Microbiol. (2008)

    Google Scholar 

  7. Palsson, B.: Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  8. Reed, J.L., Palsson, B.O.: Minireview thirteen years of building constraint-based in silico models of escherichia coli. Journal of Bacteriology, 2692–2699 (2003)

    Google Scholar 

  9. Reed, J.L., Vo, T.D., Schilling, C.H., Palsson, B.O.: An expanded genome-scale model of Escherichia coli k-12 (ijr904 gsm/gpr). Genome Biol. 4(9), R54 (2003)

    Article  Google Scholar 

  10. Edwards, J.S., Palsson, B.: Robustness analysis of the Escherichia coli metabolic network. Biotechnology Prog. 16, 927–939 (2000)

    Article  CAS  Google Scholar 

  11. Kharchenko, P., Chen, L., Freund, Y., Vitkup, D., Church, G.M.: Identifying metabolic enzymes with multiple types of association evidence. BMC Bioinformatics 7(1), 177 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen, L., Vitkup, D.: Predicting genes for orphan metabolic activities using phylogenetic profiles. Geno. Biol. 7, R17 (2006)

    Article  Google Scholar 

  13. DeJongh, M., Formsma, K., Boillot, P., Gould, J., Rycenga, M., Best, A.: Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinformatics 8(139) (2007)

    Google Scholar 

  14. Green, M.L., Karp, P.D.: A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5(76) (2004)

    Google Scholar 

  15. Kharchenko, P., Vitkup, D., Church, G.M.: Filling gaps in a metabolic network using expression information. Bioinformatics 20(suppl. 1), I178–I185 (2004)

    Article  Google Scholar 

  16. Gil, R., Silva, F.J., Pereto, J., Moya, A.: Determination of the core of a minimal bacterial gene set. Microbiology and Molecular Biology Reviews 68(3), 518–537 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Overbeek, R., Begley, T., et al.: The subsystems approach to genome annotation and its use in the Project to Annotate 1000 Genomes. Nucleic Acids Res. 33(17), 5691–5702 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aziz, R.K., Bartels, D., et al.: The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9(75) (2008)

    Google Scholar 

  19. Becker, S.A., Palsson, B.O.: Genome-scale reconstruction of the metabolic network in Staphylococcus aureus n315: an initial draft to the two-dimensional annotation. BMC Microbiol. 5(8) (2005)

    Google Scholar 

  20. Shi, X., Stevens, R.: SWARM: a scientific workflow for supporting bayesian approaches to improve metabolic models. In: Proceedings of the 6th international workshop on Challenges of Large Applications in Distributed Environments(CLADE) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, X., Stevens, R. (2009). A Bayesian Approach to High-Throughput Biological Model Generation. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics