Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parallel Selection of Informative Genes for Classification

  • Conference paper
Bioinformatics and Computational Biology (BICoB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5462))

Included in the following conference series:

  • 1129 Accesses

Abstract

In this paper, we argue that existing gene selection methods are not effective for selecting important genes when the number of samples and the data dimensions grow sufficiently large. As a solution, we propose two approaches for parallel gene selections, both are based on the well known ReliefF feature selection method. In the first design, denoted by PReliefF p , the input data are split into non-overlapping subsets assigned to cluster nodes. Each node carries out gene selection by using the ReliefF method on its own subset, without interaction with other clusters. The final ranking of the genes is generated by gathering the weight vectors from all nodes. In the second design, namely PReliefF g , each node dynamically updates the global weight vectors so the gene selection results in one node can be used to boost the selection of the other nodes. Experimental results from real-world microarray expression data show that PReliefF p and PReliefF g achieve a speedup factor nearly equal to the number of nodes. When combined with several popular classification methods, the classifiers built from the genes selected from both methods have the same or even better accuracy than the genes selected from the original ReliefF method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Golub, T., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  CAS  PubMed  Google Scholar 

  2. Xiong, M., et al.: Biomarker identification by feature wrappers. Genome Research 11, 1878–1887 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Baker, S., Kramer, B.: Identifying genes that contribute most to good classification in microarrays. BMC Bioinformatics 7, 407 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Segal, E., et al.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 34(2), 166–176 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Quinlan, J.: C4.5: Programs for Machine learning. M. Kaufmann, San Francisco (1993)

    Google Scholar 

  6. Hua, J., et al.: Optimal number of features as a function of sample size for various classification rules. Bioinformatics 21, 1509–1515 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Zhan, J., Deng, H.: Gene selection for classification of microarray data based on the Bayes error. BMC Bioinformatics 8, 370 (2007)

    Article  Google Scholar 

  8. Diaz, R., Alvarez, S.: Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7, 3 (2006)

    Article  Google Scholar 

  9. Mamitsuka, H.: Selecting features in microarray classification using ROC curves. Pattern Recognition 39, 2393–2404 (2006)

    Article  Google Scholar 

  10. Dobbin, K., et al.: How large a training set is needed to develop a classifier for microarray data. Clinical Cancer Research 14(1) (2008)

    Google Scholar 

  11. Mukherjee, S., Roberts, S.: A Theoretical Analysis of Gene Selection. In: Proc. of IEEE Computer Society Bioinformatics Conference, pp. 131–141 (2004)

    Google Scholar 

  12. Li, T., et al.: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20, 2429–2437 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Statnikov, A., et al.: A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21(5), 631–643 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Witten, F.E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  15. Plackett, R.: Karl Pearson and the Chi-Squared Test. International Statistical Review 51(1), 59–72 (1983)

    Article  Google Scholar 

  16. Robnik-Šikonja, M., Kononenko, I.: Theoretical and Empirical Analysis of ReliefF and RReliefF Mach. Learn. 53, 23–69 (2003)

    Google Scholar 

  17. Gropp, W., et al.: MPICH2 User’s Guide (2008), http://www.mcs.anl.gov/research/projects/mpich2/index.php

  18. Kohavi, R., John, G.: Wrappers for Feature Subset Selection. Artificial Intelligence 97(1-2), 273–324 (1997)

    Article  Google Scholar 

  19. Kent Ridge Biomedical Data Set Repository, http://sdmc.i2r.a-star.edu.sg/rp/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Slavik, M., Zhu, X., Mahgoub, I., Shoaib, M. (2009). Parallel Selection of Informative Genes for Classification. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics