Abstract
We present a novel technique to combine satisfiability procedures for theories that model some data-structures and that share the integer offsets. This procedure extends the Nelson-Oppen approach to a family of non-disjoint theories that have practical interest in verification. The result is derived by showing that the considered theories satisfy the hypotheses of a general result on non-disjoint combination. In particular, the capability of computing logical consequences over the shared signature is ensured in a non trivial way by devising a suitable complete superposition calculus.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Transactions on Computational LogicĀ 10(1)
Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Information and ComputationĀ 183(2), 140ā164 (2003)
Bonacina, M.P., Echenim, M.: On variable-inactivity and polynomial T-satisfiability procedures. Journal of Logic and ComputationĀ 18(1), 77ā96 (2008)
Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., Ranise, S., van Rossum, P., Sebastiani, R.: Efficient theory combination via boolean search. Information and ComputationĀ 204(10), 1493ā1525 (2006)
Bradley, A., Manna, Z.: The Calculus of Computation. Springer, Heidelberg (2007)
Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a logic of counter arithmetic with lambda expressions and uninterpreted functions. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol.Ā 2404, pp. 78ā92. Springer, Heidelberg (2002)
Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, New York (1972)
Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. Journal of Automated ReasoningĀ 33(3-4), 221ā249 (2004)
Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Noetherianity and combination problems. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS, vol.Ā 4720, pp. 206ā220. Springer, Heidelberg (2007); extended version at http://homes.dsi.unimi.it/~zucchell/publications/conference/GhiNiRaZu-FroCoS-07.pdf
Ghilardi, S., Nicolini, E., Zucchelli, D.: A comprehensive combination framework. ACM Transactions on Computational LogicĀ 9(2), 1ā54 (2008)
Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.-K.: On superposition-based satisfiability procedures and their combination. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol.Ā 3722, pp. 594ā608. Springer, Heidelberg (2005)
KrstiÄ, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo parametric theories. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol.Ā 4424, pp. 618ā631. Springer, Heidelberg (2007)
Lynch, C., Tran, D.-K.: Automatic Decidability and Combinability Revisited. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol.Ā 4603, pp. 328ā344. Springer, Heidelberg (2007)
Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transaction on Programming Languages and SystemsĀ 1(2), 245ā257 (1979)
Nicolini, E., Ringeissen, C., Rusinowitch, M.: Satisfiability Procedures for Combination of Theories Sharing Integer Offsets. Report, INRIA, RR-6697 (2008)
Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 7, vol.Ā I, pp. 371ā443. Elsevier Science, Amsterdam (2001)
Shostak, R.E.: Deciding combinations of theories. J. of the ACMĀ 31, 1ā12 (1984)
Zucchelli, D.: Combination Methods for Software Verification. PhD thesis, UniversitĆ degli Studi di Milano and UniversitĆ© Henri PoincarĆ© - Nancy 1 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nicolini, E., Ringeissen, C., Rusinowitch, M. (2009). Satisfiability Procedures for Combination of Theories Sharing Integer Offsets. In: Kowalewski, S., Philippou, A. (eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2009. Lecture Notes in Computer Science, vol 5505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00768-2_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-00768-2_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00767-5
Online ISBN: 978-3-642-00768-2
eBook Packages: Computer ScienceComputer Science (R0)