Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Multidimensional Wavelet Synopses for Maximum Error Bounds

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5463))

Included in the following conference series:

Abstract

Having been extensively used to summarize massive data sets, wavelet synopses can be classified into two types: space-bounded and error-bounded synopses. Although various research efforts have been made for the space-bounded synopses construction, the constructions of error-bounded synopses are yet to be thoroughly studied. The state-of-the-art approaches on error-bounded synopses mainly focus on building one-dimensional wavelet synopses, while efficient algorithms on constructing multidimensional error-bounded wavelet synopses still need to be investigated. In this paper, we propose a first linear approximate algorithm to construct multidimensional error-bounded L  ∞ -synopses. Our algorithm constructs a synopsis that has O(logn) approximation ratio to the size of the optimal solution. Experiments on two-dimensional array data have been conducted to support the theoretical aspects of our algorithm. Our method can build two-dimensional wavelet synopses in less than 1 second for a large data set up to 1024×1024 data array under given error bounds. The advantages of our algorithm is further demonstrated through other comparisons in terms of synopses construction time and synopses sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stollnitz, E.J., Derose, T.D., Salesin, D.H.: Wavelets for computer graphics: theory and applications, 1st edn. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  2. Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for selectivity estimation. In: ACM SIGMOD, pp. 448–459 (1998)

    Google Scholar 

  3. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. The International Journal on Very Large Data Bases, 79–88 (2001)

    Google Scholar 

  4. Guha, S., Harb, B.: Approximation algorithms for wavelet transform coding of data streams. In: IEEE TOIT, vol. 54(2) (February 2008)

    Google Scholar 

  5. Garofalakis, M., Kumar, A.: Wavelet synopses for general error metrics. ACM Trans. Database Syst. 30(4), 888–928 (2005)

    Article  Google Scholar 

  6. Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE TONN 10(5), 1055–1064 (1999)

    Google Scholar 

  7. Garofalakis, M., Gibbons, P.B.: Wavelet synopses with error guarantees. In: ACM SIGMOD, pp. 476–487 (2002)

    Google Scholar 

  8. Garofalakis, M., Kumar, A.: Deterministic wavelet thresholding for maximum-error metrics. In: ACM PODS, pp. 166–176 (2004)

    Google Scholar 

  9. Karras, P., Mamoulis, N.: One-pass wavelet synopses for maximum-error metrics. In: VLDB, pp. 421–432 (2005)

    Google Scholar 

  10. Guha, S., Harb, B.: Approximation algorithms for wavelet transform coding of data streams. In: SODA, pp. 698–707 (2006)

    Google Scholar 

  11. Guha, S., Harb, B.: Wavelet synopsis for data streams: minimizing non-euclidean error. In: ACM SIGKDD, pp. 88–97 (2005)

    Google Scholar 

  12. Karras, P., Sacharidis, D., Mamoulis, N.: Exploiting duality in summarization with deterministic guarantees. In: ACM SIGKDD, pp. 380–389 (2007)

    Google Scholar 

  13. Chen, H., Li, J., Mohapatra, P.: Race: time series compression with rate adaptively and error bound for sensor networks. In: IEEE International conference on Mobile Ad-hoc and Sensor systems (2004)

    Google Scholar 

  14. Shimokawa, H., Te Han, S., Amari, S.: Error bound of hypothesis testing with data compression. In: Proceedings of IEEE International Symposium on Information Theory, p. 114 (1994)

    Google Scholar 

  15. Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error bounds. In: DIALM-POMC, pp. 33–42 (2003)

    Google Scholar 

  16. Muthukrishnan, S.: Subquadratic algorithms for workload-aware haar wavelet synopses. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 285–296. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Pang, C., Zhang, Q., Hansen, D., Maeder, A.: Building data synopses within a known maximum error bound. In: APWeb/ WAIM 2007 (2007)

    Google Scholar 

  18. Pang, C., Zhang, Q., Hansen, D., Maeder, A.: Unrestricted wavelet synopses under maximum error bound. In: EDBT/ ICDT (2009)

    Google Scholar 

  19. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query processing using wavelets. VLDB Journal 10(2-3), 199–223 (2001)

    MATH  Google Scholar 

  20. Pang, C., Zhang, Q., Hansen, D., Maeder, A.: Constructing unrestricted wavelet synopses under maximum error bound. Technical report, ICT CSIRO (08/209)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Q., Pang, C., Hansen, D. (2009). On Multidimensional Wavelet Synopses for Maximum Error Bounds. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds) Database Systems for Advanced Applications. DASFAA 2009. Lecture Notes in Computer Science, vol 5463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00887-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00887-0_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00886-3

  • Online ISBN: 978-3-642-00887-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics