Abstract
Having been extensively used to summarize massive data sets, wavelet synopses can be classified into two types: space-bounded and error-bounded synopses. Although various research efforts have been made for the space-bounded synopses construction, the constructions of error-bounded synopses are yet to be thoroughly studied. The state-of-the-art approaches on error-bounded synopses mainly focus on building one-dimensional wavelet synopses, while efficient algorithms on constructing multidimensional error-bounded wavelet synopses still need to be investigated. In this paper, we propose a first linear approximate algorithm to construct multidimensional error-bounded L ∞ -synopses. Our algorithm constructs a synopsis that has O(logn) approximation ratio to the size of the optimal solution. Experiments on two-dimensional array data have been conducted to support the theoretical aspects of our algorithm. Our method can build two-dimensional wavelet synopses in less than 1 second for a large data set up to 1024×1024 data array under given error bounds. The advantages of our algorithm is further demonstrated through other comparisons in terms of synopses construction time and synopses sizes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stollnitz, E.J., Derose, T.D., Salesin, D.H.: Wavelets for computer graphics: theory and applications, 1st edn. Morgan Kaufmann, San Francisco (1996)
Matias, Y., Vitter, J.S., Wang, M.: Wavelet-based histograms for selectivity estimation. In: ACM SIGMOD, pp. 448–459 (1998)
Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. The International Journal on Very Large Data Bases, 79–88 (2001)
Guha, S., Harb, B.: Approximation algorithms for wavelet transform coding of data streams. In: IEEE TOIT, vol. 54(2) (February 2008)
Garofalakis, M., Kumar, A.: Wavelet synopses for general error metrics. ACM Trans. Database Syst. 30(4), 888–928 (2005)
Chapelle, O., Haffner, P., Vapnik, V.N.: Support vector machines for histogram-based image classification. IEEE TONN 10(5), 1055–1064 (1999)
Garofalakis, M., Gibbons, P.B.: Wavelet synopses with error guarantees. In: ACM SIGMOD, pp. 476–487 (2002)
Garofalakis, M., Kumar, A.: Deterministic wavelet thresholding for maximum-error metrics. In: ACM PODS, pp. 166–176 (2004)
Karras, P., Mamoulis, N.: One-pass wavelet synopses for maximum-error metrics. In: VLDB, pp. 421–432 (2005)
Guha, S., Harb, B.: Approximation algorithms for wavelet transform coding of data streams. In: SODA, pp. 698–707 (2006)
Guha, S., Harb, B.: Wavelet synopsis for data streams: minimizing non-euclidean error. In: ACM SIGKDD, pp. 88–97 (2005)
Karras, P., Sacharidis, D., Mamoulis, N.: Exploiting duality in summarization with deterministic guarantees. In: ACM SIGKDD, pp. 380–389 (2007)
Chen, H., Li, J., Mohapatra, P.: Race: time series compression with rate adaptively and error bound for sensor networks. In: IEEE International conference on Mobile Ad-hoc and Sensor systems (2004)
Shimokawa, H., Te Han, S., Amari, S.: Error bound of hypothesis testing with data compression. In: Proceedings of IEEE International Symposium on Information Theory, p. 114 (1994)
Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error bounds. In: DIALM-POMC, pp. 33–42 (2003)
Muthukrishnan, S.: Subquadratic algorithms for workload-aware haar wavelet synopses. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 285–296. Springer, Heidelberg (2005)
Pang, C., Zhang, Q., Hansen, D., Maeder, A.: Building data synopses within a known maximum error bound. In: APWeb/ WAIM 2007 (2007)
Pang, C., Zhang, Q., Hansen, D., Maeder, A.: Unrestricted wavelet synopses under maximum error bound. In: EDBT/ ICDT (2009)
Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approximate query processing using wavelets. VLDB Journal 10(2-3), 199–223 (2001)
Pang, C., Zhang, Q., Hansen, D., Maeder, A.: Constructing unrestricted wavelet synopses under maximum error bound. Technical report, ICT CSIRO (08/209)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Q., Pang, C., Hansen, D. (2009). On Multidimensional Wavelet Synopses for Maximum Error Bounds. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds) Database Systems for Advanced Applications. DASFAA 2009. Lecture Notes in Computer Science, vol 5463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00887-0_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-00887-0_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00886-3
Online ISBN: 978-3-642-00887-0
eBook Packages: Computer ScienceComputer Science (R0)