Abstract
Minimizing power consumption continues to grow as a critical design issue for many platforms, from embedded systems to CMPs to ultrascale parallel systems. As growing cache sizes consume larger portions of the die, reducing their power consumption becomes increasingly important. Voltage scaling reduces leakage power for cache lines unlikely to be referenced soon. Partitioning reduces dynamic power via smaller, specialized structures. We introduce a reuse distance (RD) drowsy caching mechanism that exploits temporal locality, delivers equivalent or better energy savings than the best policies from the literature, suffers little performance overhead, is simple to implement, and scales with cache size and hierarchy depth.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, A., Pudar, S.: Column-associative caches: A technique for reducing the miss rate of direct-mapped caches. In: Proc. 20th IEEE/ACM International Symposium on Computer Architecture, pp. 169–178 (May 1993)
Albonesi, D.: Selective cache ways: On-demand cache resource allocation. In: Proc. IEEE/ACM 32nd International Symposium on Microarchitecture, pp. 248–259 (November 1999)
Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level power analysis and optimizations. In: Proc. 27th IEEE/ACM International Symposium on Computer Architecture, pp. 83–94 (2000)
Calder, B., Grunwald, D., Emer, J.: Predictive sequential associative cache. In: Proc. 2nd IEEE Symposium on High Performance Computer Architecture, pp. 244–253 (February 1996)
Flautner, K., Kim, N., Martin, S., Blaauw, D., Mudge, T.: Drowsy caches: Simple techniques for reducing leakage power. In: Proc. 29th IEEE/ACM International Symposium on Computer Architecture, pp. 147–157 ( May 2002)
Geiger, M., McKee, S., Tyson, G.: Beyond basic region caching: Specializing cache structures for high performance and energy conservation. In: Conte, T., Navarro, N., Hwu, W.-m.W., Valero, M., Ungerer, T. (eds.) HiPEAC 2005. LNCS, vol. 3793, pp. 102–115. Springer, Heidelberg (2005)
Geiger, M., McKee, S., Tyson, G.: Drowsy region-based caches: Minimizing both dynamic and static power dissipation. In: Proc. ACM Computing Frontiers Conference, pp. 378–384 (May 2005)
Ghose, K., Kamble, M.: Reducing power in superscalar processor caches using subbanking, multiple line buffers and bit-line segmentation. In: Proc. IEEE/ACM International Symposium on Low Power Electronics and Design, pp. 70–75 (August 1999)
Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R.: MiBench: A free, commercially representative embedded benchmark suite. In: Proc. IEEE 4th Workshop on Workload Characterization, pp. 3–14 (December 2001)
Inoue, K., Ishihara, T., Murakami, K.: Way-predicting set-associative cache for high performance and low energy consumption. In: Proc. IEEE/ACM International Symposium on Low Power Electronics and Design, pp. 273–275 (August 1999)
Inoue, K., Moshnyaga, V., Murakami, K.: Trends in high-performance, low-power cache memory architectures. IEICE Transactions on Electronics E85-C(2), 303–314 (2002)
Kamble, M., Ghose, K.: Analytical energy dissipation models for low power caches. In: Proc. IEEE/ACM International Symposium on Low Power Electronics and Design, pp. 143–148 (August 1997)
Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: Exploiting generational behavior to reduce cache leakage power. In: Proc. 28th IEEE/ACM International Symposium on Computer Architecture, pp. 240–251 (June 2001)
Kim, N., Flautner, K., Blaauw, D., Mudge, T.: Circuit and microarchitectural techniques for reducing cache leakage power. IEEE Transactions on VLSI 12(2), 167–184 (2004)
Kin, J., Gupta, M., Mangione-Smith, W.: Filtering memory references to increase energy efficiency. IEEE Transactions on Computers 49(1), 1–15 (2000)
Lee, H.: Improving Energy and Performance of Data Cache Architectures by Exploiting Memory Reference Characteristics. PhD thesis, University of Michigan (2001)
Lee, H., Smelyanski, M., Newburn, C., Tyson, G.: Stack value file: Custom microarchitecture for the stack. In: Proc. 7th IEEE Symposium on High Performance Computer Architecture, pp. 5–14 (January 2001)
Lee, H., Tyson, G.: Region-based caching: An energy-delay efficient memory architecture for embedded processors. In: Proc. 4th ACM International Conference on Compilers, Architectures and Synthesis for Embedded Systems, pp. 120–127 (November 2000)
Petit, S., Sahuquillo, J., Such, J., Kaeli, D.: Exploiting temporal locality in drowsy cache policies. In: Proc. ACM Computing Frontiers Conference, pp. 371–377 (May 2005)
Powell, M., Yang, S.-H., Falsafi, B., Roy, K., Vijaykumar, T.: Gated-Vdd: A circuit technique to reduce leakage in deep-submicron cache memories. In: Proc. IEEE/ACM International Symposium on Low Power Electronics and Design, pp. 90–95 (July 2000)
Seznec, A.: A case for two-way skewed-associative cache. In: Proc. 20th IEEE/ACM International Symposium on Computer Architecture (May 1993)
Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically characterizing large scale program behavior. In: Proc. 10th ACM Symposium on Architectural Support for Programming Languages and Operating Systems, pp. 45–57 (October 2002)
Shivakumar, P., Jouppi, N.: CACTI 3.0: An integrated cache timing, power, and area model. Technical Report WRL-2001-2, Compaq Western Research Lab (August 2001)
Zhang, Y., Parikh, D., Sankaranarayanan, K., Skadron, K., Stan, M.: Hotleakage: A temperature-aware model of subthreshold and gate leakage for architects. Technical Report CS-2003-05, University of Virginia Department of Computer Science (March 2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bhadauria, M., McKee, S.A., Singh, K., Tyson, G.S. (2009). Data Cache Techniques to Save Power and Deliver High Performance in Embedded Systems. In: Stenström, P. (eds) Transactions on High-Performance Embedded Architectures and Compilers II. Lecture Notes in Computer Science, vol 5470. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00904-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-00904-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00903-7
Online ISBN: 978-3-642-00904-4
eBook Packages: Computer ScienceComputer Science (R0)