Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Predictive Classification Trees

  • Conference paper
  • First Online:
Advances in Data Analysis, Data Handling and Business Intelligence

Abstract

CART (Breiman et al., Classification and Regression Trees, Chapman and Hall, New York, 1984) and (exhaustive) CHAID (Kass, Appl Stat 29:119–127, 1980) figure prominently among the procedures actually used in data based management, etc. CART is a well-established procedure that produces binary trees. CHAID, in contrast, admits multiple splittings, a feature that allows to exploit the splitting variable more extensively. On the other hand, that procedure depends on premises that are questionable in practical applications. This can be put down to the fact that CHAID relies on simultaneous Chi-Square- resp. F-tests. The null-distribution of the second test statistic, for instance, relies on the normality assumption that is not plausible in a data mining context. Moreover, none of these procedures – as implemented in SPSS, for instance – take ordinal dependent variables into account. In the paper we suggest an alternative tree-algorithm that:

  • Requires explanatory categorical variables

  • Chooses splitting attributes by means of predictive measures of association. The cells to be united – respectively the number of splits – are determined with the help of their conditional predictive power

  • Greedily searches for a part of the population that can be classified/scored rather precisely

  • Takes ordinal dependent variables into consideration

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agresti, A. (1984). Analysis of ordinal categorical data. New York: Wiley.

    MATH  Google Scholar 

  • Biggs, D., De Ville, B., & Suen, E. (1991). A method of choosing multiway partitions for classification and decision trees. Journal of Applied Statistics, 18(1), 49–62.

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

    MATH  MathSciNet  Google Scholar 

  • Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(3), 801–849.

    Article  MATH  MathSciNet  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  MATH  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. New York: Chapman and Hall.

    MATH  Google Scholar 

  • Cox, C. (1988). Multinomial regression models based on continuation ratios. Statistics in Medicine, 7(3), 435–441.

    Article  Google Scholar 

  • Fahrmeir, L., Hamerle, A., & Tutz, G. (1996). Multivariate statistische Verfahren. Berlin: de Gruyter.

    Google Scholar 

  • Ferschl, F. (1985). Deskriptive Statistik. Würzburg: Physica entfernen.

    Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. Berlin: Springer.

    MATH  Google Scholar 

  • Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29, 119–127.

    Article  Google Scholar 

  • McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical Society: Series B, 42(2), 109–142.

    MATH  MathSciNet  Google Scholar 

  • Müller-Funk, U. (2007). Measures of dispersion and cluster-trees for categorical data. In C. Preisach, H. Burkhardt, L. Schmidt-Thieme, & R. Decker (Eds.), Data analysis, machine learning and applications (pp. 163–170). Berlin: Springer.

    Google Scholar 

  • Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680.

    Article  Google Scholar 

  • Witting, H., & Müller-Funk, U. (1985). Mathematische Statistik II. Stuttgart: B.G.Teubner.

    Google Scholar 

  • Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: an efficient data clustering method for very large databases. In J. Widom (Ed.), Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data (pp. 103–114). New York: ACM.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Müller-Funk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dlugosz, S., Müller-Funk, U. (2009). Predictive Classification Trees. In: Fink, A., Lausen, B., Seidel, W., Ultsch, A. (eds) Advances in Data Analysis, Data Handling and Business Intelligence. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01044-6_11

Download citation

Publish with us

Policies and ethics