Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Accurate Synthetic Generation of Realistic Personal Information

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5476))

Included in the following conference series:

Abstract

A large portion of data collected by many organisations today is about people, and often contains personal identifying information, such as names and addresses. Privacy and confidentiality are of great concern when such data is being shared between organisations or made publicly available. Research in (privacy-preserving) data mining and data linkage is suffering from a lack of publicly available real-world data sets that contain personal information, and therefore experimental evaluations can be difficult to conduct. In order to overcome this problem, we have developed a data generator that allows flexible creation of synthetic data containing personal information with realistic characteristics, such as frequency distributions, attribute dependencies, and error probabilities. Our generator significantly improves earlier approaches, and allows the generation of data for individuals, families and households.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Christen, P.: Privacy-preserving data linkage and geocoding: Current approaches and research directions. In: ICDM PADM workshop, Hong Kong (2006)

    Google Scholar 

  2. Hernandez, M., Stolfo, S.: Real-world data is dirty: Data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery 2(1), 9–37 (1998)

    Article  Google Scholar 

  3. Christen, P., Goiser, K.: Quality and complexity measures for data linkage and deduplication. In: Quality Measures in Data Mining. Studies in Computational Intelligence, vol. 43, pp. 127–151. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate record detection: A survey. IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

    Article  Google Scholar 

  5. Christen, P.: Probabilistic data generation for deduplication and data linkage. In: Gallagher, M., Hogan, J.P., Maire, F. (eds.) IDEAL 2005. LNCS, vol. 3578, pp. 109–116. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Bertolazzi, P., De Santis, L., Scannapieco, M.: Automated record matching in cooperative information systems. In: DQCIS, Siena, Italy (2003)

    Google Scholar 

  7. Pudjijono, A.: Probabilistic data generation. Master of Computing (Honours) thesis, Department of Computer Science, The Australian National University (2008)

    Google Scholar 

  8. Pollock, J., Zamora, A.: Automatic spelling correction in scientific and scholarly text. Communications of the ACM 27(4), 358–368 (1984)

    Article  Google Scholar 

  9. Christen, P.: A comparison of personal name matching: Techniques and practical issues. In: ICDM MCD workshop, Hong Kong (2006)

    Google Scholar 

  10. Christen, P.: Febrl – An open source data cleaning, deduplication and record linkage system with a graphical user interface. In: ACM KDD, Las Vegas (2008)

    Google Scholar 

  11. Phua, C., Lee, V., Smith-Miles, K.: The personal name problem and a recommended data mining solution. In: Encyclopedia of Data Warehousing and Mining, 2nd edn., Information Science Reference (2008)

    Google Scholar 

  12. Damerau, F.: A technique for computer detection and correction of spelling errors. Communications of the ACM 7(3), 171–176 (1964)

    Article  Google Scholar 

  13. Hall, P., Dowling, G.: Approximate string matching. ACM Computing Surveys 12(4), 381–402 (1980)

    Article  MathSciNet  Google Scholar 

  14. Kukich, K.: Techniques for automatically correcting words in text. ACM Computing Surveys 24(4), 377–439 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Christen, P., Pudjijono, A. (2009). Accurate Synthetic Generation of Realistic Personal Information. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, TB. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2009. Lecture Notes in Computer Science(), vol 5476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01307-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01307-2_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01306-5

  • Online ISBN: 978-3-642-01307-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics