Abstract
A tanglegram is a pair of trees on the same set of leaves with matching leaves in the two trees joined by an edge. Tanglegrams are widely used in biology – to compare evolutionary histories of host and parasite species and to analyze genes of species in the same geographical area. We consider optimizations problems in tanglegram drawings. We show a linear time algorithm to decide if a tanglegram admits a planar embedding by a reduction to the planar graph drawing problem. This problem was considered by Fernau, Kauffman and Poths. (FSTTCS 2005). Our reduction method provides a simpler proof and helps to solve a conjecture they posed, showing a fixed-parameter tractable algorithm for minimizing the number of crossings over all d-ary trees.
For the case where one tree is fixed, we show an O(n logn) algorithm to determine the drawing of the second tree that minimizes the number of crossings. This improves the bound from earlier methods. We introduce a new optimization criterion using Spearman’s footrule optimization and give an O(n 2) algorithm.
We also show integer programming formulations to quickly obtain tanglegram drawings that minimize the two optimization measures discussed. We prove lower bounds on the maximum gap between the optimal solution and the heuristic of Dwyer and Schreiber (Austral. Symp. on Info. Vis. 2004) to minimize crossings.
This research was partially supported by NSF grants SEI-BIO 0513910, SEI-SBE 0513660, CCF-0515378, and IIS-0803564.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bansal, M.S., Chang, W.-C., Eulenstein, O., Fernández-Baca, D.: Generalized binary tanglegrams: Algorithms and applications. In: BiCoB (2009)
Bertolazzi, P., Battista, G.D., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)
Biedl, T.C., Brandenburg, F.-J., Deng, X.: Crossings and permutations. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 1–12. Springer, Heidelberg (2006)
Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R.I., Wolff, A.: Drawing (complete) binary tanglegrams: Hardness, approximation, fixed-parameter tractability. In: Graph Drawing. Springer, Heidelberg (2008)
Burt, A., Trivers, R.: Genes in Conflict. Belknap Harvard Press (2006)
Charleston, M., Perkins, S.: Lizards, malaria, and jungles in the Caribbean. In: Page, R. (ed.) Tangled Trees: Phylogeny, Cospeciation, and Coevolution, pp. 65–92. University Of Chicago Press, Chicago (2003)
Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. Journal of the Royal Statistical Society. Series B (Methodological) 39(2), 262–268 (1977)
Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: WWW, pp. 613–622 (2001)
Dwyer, T., Schreiber, F.: Optimal leaf ordering for two and a half dimensional phylogenetic tree visualisation. In: Australasian Symp. on Info. Vis., pp. 109–115 (2004)
Page, R.D.M. (ed.): Tangled Trees: Phylogeny, Cospeciation, and Coevolution. University Of Chicago Press, Chicago (2002)
Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: SODA, pp. 28–36 (2003)
Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 457–469. Springer, Heidelberg (2005)
Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete. Adv. in Appl. Math. 3(1), 43–49 (1982)
Garey, M., Johnson, D.S.: Crossing number is np-complete. SIAM Journal on Algebraic and Discrete Methods 4, 312–316 (1983)
Hinze, R., Paterson, R.: Finger trees: A simple general-purpose data structure. Journal of Functional Programming 16(2), 197–217 (2006)
Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)
Huelsenbeck, J.P., Ronquist, F.: Mrbayes: Bayesian inference of phylogeny (2001)
Kaplan, H., Tarjan, R.E.: Purely functional representations of catenable sorted lists. In: STOC 1996, pp. 202–211. ACM, New York (1996)
Kawarabayashi, K., Reed, B.: Computing crossing number in linear time. In: STOC, pp. 382–390 (2007)
Lee, J.: All-different polytopes. Journal of Combin. Optim. 6(3), 335–352 (2002)
Lozano, A., Pinter, R.Y., Rokhlenko, O., Valiente, G., Ziv-Ukelson, M.: Seeded tree alignment and planar tanglegram layout. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 98–110. Springer, Heidelberg (2007)
Hillis, D.M., Heath, T., John, K.S.: Analysis and visualization of tree space. Systematic Biology 3, 471–482 (2005)
Nöllenburg, M., Holten, D., Völker, M., Wolff, A.: Drawing binary tanglegrams: An experimental evaluation. In: ALENEX, pp. 106–119. SIAM, Philadelphia (2009)
Roch, S.: A short proof that phylogenetic tree reconstruction by maximum likelihood is hard. IEEE/ACM Trans. Comp. Biol. and Bioinf. 3(1), 92–94 (2006)
Shih, W.K., Hsu, W.-L.: A new planarity test. Theor. Comput. Sci. 223(1-2), 179–191 (1999)
Swofford, D.L.: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts (2002)
Swofford, D.L., Olsen, G.J., Waddell, P.J., Hillis, D.M.: Phylogenetic inference. In: Molecular Systematics, 2nd edn., pp. 407–514. Sinauer (1996)
Venkatachalam, B., Apple, J., John, K.S., Gusfield, D.: Untangling tanglegrams: Comparing trees by their drawings. Technical Report CSE-2009-1, UC Davis, Computer Science Department (2009)
Wan Zainon, W.N., Calder, P.: Visualising phylogenetic trees. In: Piekarski, W. (ed.) Seventh Australasian User Interface Conference (AUIC 2006), Hobart, Australia. CRPIT, vol. 50, pp. 145–152. ACS (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Venkatachalam, B., Apple, J., St. John, K., Gusfield, D. (2009). Untangling Tanglegrams: Comparing Trees by Their Drawings. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds) Bioinformatics Research and Applications. ISBRA 2009. Lecture Notes in Computer Science(), vol 5542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01551-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-01551-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01550-2
Online ISBN: 978-3-642-01551-9
eBook Packages: Computer ScienceComputer Science (R0)