Abstract
Most of image processing algorithms assume that an image has an additive white Gaussian noise (AWGN). However, since the real noise is not AWGN, such algorithms are not effective with real images acquired by image sensors for digital camera. In this paper, we present an integrated noise model for image sensors that can handle shot noise, dark-current noise and fixed-pattern noise together. In addition, unlike most noise modeling methods, parameters for the model do not need to be re-configured depending on input images once it is made. Thus the proposed noise model is best suitable for various imaging devices. We introduce two applications of our noise model: edge detection and noise reduction in image sensors. The experimental results show how effective our noise model is for both applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixture of Gaussian in the wavelet domain. IEEE Trans. Image Processing 12(11), 1338–1351 (2003)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. Sixth Int’l Conf. Computer Vision, pp. 839–846 (1998)
Hwang, Y., Kim, J., Kweon, J.-S.: Sensor noise modeling using the Skellam distribution: Application to color edge detection. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1–8 (2007)
Weeratunga, S.K., Kamath, C.: Comparison of PDE-based non-linear anisotrofic diffusion techniques for image denoising. In: Proc. SPIE-IS&T Electronic Imaging, vol. 5014, pp. 201–212 (2003)
Liu, C., Szeliski, R., Kang, S.B., Zitnick, C.L., Freeman, W.T.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Analysis and Machine Intelligence 30(2), 299–314 (2008)
Yoo, Y., Lee, S., Choe, W., Kim, C.-Y.: CMOS image sensor noise reduction method for image signal processor in digital cameras and camera phones. In: Proc. SPIE-IS&T Electronic Imaging, vol. 6502, p. 65020 (2007)
Healey, G.E., Kondepudy, R.: Radiometric CCD camera calibration and noise estimation. IEEE Trans. Patter Analysis and Machine Intelligence 16(3), 267–276 (1994)
Faraji, H., MacLean, W.J.: CCD noise removal in digital images. IEEE Trans. Image Processing 15(9), 2676–2685 (2006)
Lim, S.: Characterization, of noise in digital photographs for image processing. In: Proc. SPIE-IS&T Electronic Imaging, vol. 6069, p. 60690O (2006)
Wikipidia. dcraw, http://en.wikipedia.org/wiki/Dcraw
Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. on Patten Analysis and Machine Intelligence 8(6), 679–698 (1986)
Baek, Y.-M., Cho, D.-C., Lee, J.-A., Kim, W.-Y.: Noise Reduction for Image Signal Processor in Digital Cameras. In: Proc. Int’l Conf. Convergence and Hybrid Information Technology, pp. 474–471 (2008)
ISO 15739: Photography – Electronic still-picture cameras
Hytti, H.T.: Characterization of Digital Image Noise Properties based on RAW Data. In: Proc. SPIE, vol. 6059, p. 60590A (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baek, YM., Kim, JG., Cho, DC., Lee, JA., Kim, WY. (2009). Integrated Noise Modeling for Image Sensor Using Bayer Domain Images. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics CollaborationTechniques. MIRAGE 2009. Lecture Notes in Computer Science, vol 5496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01811-4_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-01811-4_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01810-7
Online ISBN: 978-3-642-01811-4
eBook Packages: Computer ScienceComputer Science (R0)