Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Integrated Noise Modeling for Image Sensor Using Bayer Domain Images

  • Conference paper
Computer Vision/Computer Graphics CollaborationTechniques (MIRAGE 2009)

Abstract

Most of image processing algorithms assume that an image has an additive white Gaussian noise (AWGN). However, since the real noise is not AWGN, such algorithms are not effective with real images acquired by image sensors for digital camera. In this paper, we present an integrated noise model for image sensors that can handle shot noise, dark-current noise and fixed-pattern noise together. In addition, unlike most noise modeling methods, parameters for the model do not need to be re-configured depending on input images once it is made. Thus the proposed noise model is best suitable for various imaging devices. We introduce two applications of our noise model: edge detection and noise reduction in image sensors. The experimental results show how effective our noise model is for both applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixture of Gaussian in the wavelet domain. IEEE Trans. Image Processing 12(11), 1338–1351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)

    Article  Google Scholar 

  3. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. Sixth Int’l Conf. Computer Vision, pp. 839–846 (1998)

    Google Scholar 

  4. Hwang, Y., Kim, J., Kweon, J.-S.: Sensor noise modeling using the Skellam distribution: Application to color edge detection. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  5. Weeratunga, S.K., Kamath, C.: Comparison of PDE-based non-linear anisotrofic diffusion techniques for image denoising. In: Proc. SPIE-IS&T Electronic Imaging, vol. 5014, pp. 201–212 (2003)

    Google Scholar 

  6. Liu, C., Szeliski, R., Kang, S.B., Zitnick, C.L., Freeman, W.T.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Analysis and Machine Intelligence 30(2), 299–314 (2008)

    Article  Google Scholar 

  7. Yoo, Y., Lee, S., Choe, W., Kim, C.-Y.: CMOS image sensor noise reduction method for image signal processor in digital cameras and camera phones. In: Proc. SPIE-IS&T Electronic Imaging, vol. 6502, p. 65020 (2007)

    Google Scholar 

  8. Healey, G.E., Kondepudy, R.: Radiometric CCD camera calibration and noise estimation. IEEE Trans. Patter Analysis and Machine Intelligence 16(3), 267–276 (1994)

    Article  Google Scholar 

  9. Faraji, H., MacLean, W.J.: CCD noise removal in digital images. IEEE Trans. Image Processing 15(9), 2676–2685 (2006)

    Article  Google Scholar 

  10. Lim, S.: Characterization, of noise in digital photographs for image processing. In: Proc. SPIE-IS&T Electronic Imaging, vol. 6069, p. 60690O (2006)

    Google Scholar 

  11. Wikipidia. dcraw, http://en.wikipedia.org/wiki/Dcraw

  12. Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. on Patten Analysis and Machine Intelligence 8(6), 679–698 (1986)

    Article  Google Scholar 

  13. Baek, Y.-M., Cho, D.-C., Lee, J.-A., Kim, W.-Y.: Noise Reduction for Image Signal Processor in Digital Cameras. In: Proc. Int’l Conf. Convergence and Hybrid Information Technology, pp. 474–471 (2008)

    Google Scholar 

  14. ISO 15739: Photography – Electronic still-picture cameras

    Google Scholar 

  15. Hytti, H.T.: Characterization of Digital Image Noise Properties based on RAW Data. In: Proc. SPIE, vol. 6059, p. 60590A (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baek, YM., Kim, JG., Cho, DC., Lee, JA., Kim, WY. (2009). Integrated Noise Modeling for Image Sensor Using Bayer Domain Images. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics CollaborationTechniques. MIRAGE 2009. Lecture Notes in Computer Science, vol 5496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01811-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01811-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01810-7

  • Online ISBN: 978-3-642-01811-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics