Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

Our paper presents a new exact method to solve the traveling tournament problem. More precisely, we apply DFS* to this problem and improve its performance by keeping the expensive heuristic estimates in memory to help greatly cut down the computational time needed. We further improve the performance by exploiting a symmetry property found in the traveling tournament problem. Our results show that our approach is one of the top performing approaches for this problem. It is able to find known optimal solutions in a much smaller amount of computational time than past approaches, to find a new optimal solution, and to improve the lower bounds of larger problem instances which do not have known optimal solutions. As a final contribution, we also introduce a new set of problem instances to diversify the available instance sets for the traveling tournament problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benoist, T., Laburthe, F., Rottembourg, B.: Lagrange relaxation and constraint programming collaborative schemes for travelling tournament problems. In: Proceedings of CP-AI-OR 2001, Wye College, UK, pp. 15–26 (2001)

    Google Scholar 

  2. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco (2003)

    MATH  Google Scholar 

  3. Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem description and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–584. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Easton, K., Nemhauser, G., Trick, M.: Solving the travelling tournament problem: A combined integer programming and constraint programming approach. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 100–109. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Irnich, S., Schrempp, U.: A new branch-and-price algorithm for the traveling tournament problem. Presented at Column Generation 2008, Aussois, France (June 17-20, 2008), http://www.gerad.ca/colloques/ColumnGeneration2008/slides/SIrnich.pdf (accessed March 07, 2009)

  6. Sarkar, U.K., Chakrabarti, P.P., Ghose, S., De Sarkar, S.C.: Reducing reexpansions in iterative-deepening search by controlling cutoff bounds. Artificial Intelligence 50, 207–221 (1991)

    Article  MathSciNet  Google Scholar 

  7. Trick, M.: Challenge Traveling Tournament Problems, http://mat.gsia.cmu.edu/TOURN/ (accessed March 07, 2009)

  8. Urrutia, S., Ribeiro, C.C., Melo, R.A.: A new lower bound to the traveling tournament problem. In: IEEE Symposium on Computational Intelligence in Scheduling, pp. 15–18 (2007)

    Google Scholar 

  9. Vempaty, N.R., Kumar, V., Korf, R.E.: Depth-First vs Best-First Search. In: Proc. National Conf. on Artificial Intelligence, AAAI 1991, Anaheim, CA, pp. 434–440 (1991)

    Google Scholar 

  10. Wah, B.W.: MIDA*: An IDA* search with dynamic control. Technical report, Coordinated Science Laboratoy, University of Illinois, Urbana, Illinois (1991)

    Google Scholar 

  11. Talbi, E.-G.: Parallel Combinatorial Optimization. John Wiley & Sons, Hoboken (2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uthus, D.C., Riddle, P.J., Guesgen, H.W. (2009). DFS* and the Traveling Tournament Problem. In: van Hoeve, WJ., Hooker, J.N. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2009. Lecture Notes in Computer Science, vol 5547. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01929-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01929-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01928-9

  • Online ISBN: 978-3-642-01929-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics