Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Characterization of Post-infarct Scars in a Porcine Model – A Combined Experimental and Theoretical Study

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2009)

Abstract

Arrhythmias are often associated with healing infarcts and could arise from the border zone of the scars. The main purpose of this work was to characterize the infarct scars using in vivo electro-anatomic CARTO maps (recorded in sinus rhythm) and high-resolution ex-vivo MR images in a porcine model of chronic infarct. The MR images were segmented into scar, peri-infarct and healthy ventricular tissue, and, in select slices, the results of segmentation were validated against histology. Further, the segmented volumes and associated fiber directions (derived from diffusion-weighted (DW) MRI as well as from synthetic models), were used as input to a simple two-variable mathematical model that calculates the propagation of depolarization waves and isochronal maps; and these isochronal maps were compared to the measured ones. We further correlated the size of the scar measured during the electrophysiology (EP) study with scar dimensions obtained from MRI using ex-vivo DW-MRI methods. Finally, we present preliminary results from a qualitative comparison between the scar delineation from ex vivo and in vivo MR images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kebler, A., Rudy, Y.: Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiological Review 84, 431–488 (2004)

    Article  Google Scholar 

  2. Ursell, P.C., Gardner, P.I., et al.: Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during healing. Circ. Research 56, 436–451 (1985)

    Article  Google Scholar 

  3. Arenal, A., del Castillo, S., Gonzalez-Torrecilla, E., et al.: Tachycardia-related channel in the scar tissue in patients with sustained monomorphic VT. Influence of the voltage scar definition. Circulation 110, 2568–2574 (2004)

    Google Scholar 

  4. Ciaccio, E.J., Chow, A.W., Kaba, R.A., et al.: Detection of the diastolic pathway, circuit morphology, and inducibility of human postinfarction VT from mapping in sinus rhythm. Heart Rhythm 5(7), 981–991 (2008)

    Article  Google Scholar 

  5. Wu, E.X., Wu, Y., et al.: MR diffusion tensor imaging study of postinfarct myocardium structural remodeling in a porcine model. Magnetic Resonance Medicine 58(4), 687–695 (2007)

    Article  Google Scholar 

  6. Wu, M.T., Tseng, W.Y., Su, M.Y., et al.: Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: correlation with viability and wall motion. Circulation 114, 1036–1045 (2006)

    Article  Google Scholar 

  7. Ashikaga, H., Sasano, T., Dong, J., et al.: MR based anatomical analysis of scar-related VT. Circulation Research, 1–9 (2007)

    Google Scholar 

  8. Yan, A.T., Shayne, A.J., Brown, K.A., et al.: Characterization of the Peri-Infarct Zone by Contrast-Enhanced Cardiac MRI is a powerful predictor of Post-Myocardial infarction mortality. Circulation 114, 32–39 (2006)

    Article  Google Scholar 

  9. Codreanu, A., Odille, F., Aliot, E., et al.: Electoanatomic characterization of post-infarct scars. Comparison with 3D myocardial scar reconstruction based on MRI. Journal of the American College of Cardiology 52(10), 839–842 (2008)

    Article  Google Scholar 

  10. Dickfield, T., Lei, P., Dilsizian, V., et al.: Integration of 3D scar maps for VT ablation with PET-Computed tomography. Cardiovascular Imaging 1(1), 73–82 (2008)

    Google Scholar 

  11. Nazarian, S., Bluemke, D.A., Lardo, A.C., et al.: Magnetic resonance assessment of the substrate for inducible VT in nonischemic cardiomyopathy. Circulation 112(18), 2821–2825 (2005)

    Article  Google Scholar 

  12. Clayton, R.H., Panfilov, A.V.: A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Progress in Biophysics & Molecular Biology (review) (2007)

    Google Scholar 

  13. Aliev, R., Panfilov, A.V.: A simple two variables model of cardiac excitation. Chaos, Soliton and Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

  14. Nash, M.P., Panfilov, A.V.: Electromechanical model of the excitable tissue to study reentrant cardiac arrhythmias. Progress in Biophysics and Molecular Biology 85, 501–510 (2004)

    Article  Google Scholar 

  15. Sermesant, M., Delingette, H., Ayache, N.: An Electromechanical Model of the Heart for Image Analysis and Simulation. IEEE Trans. on Med. Imag. 25(5), 612–625 (2006)

    Article  Google Scholar 

  16. Moreau-Villeger, V., Delingette, H., Sermesant, M., Ashikaga, H., McVeigh, E.R., Ayache, N.: Building maps of local apparent conductivity of the epicardium with a 2-D electrophysiological model of the heart. IEEE Transactions on Biomedical Engineering 53(8), 1457–1466 (2006)

    Google Scholar 

  17. Helm, P., Tseng, H.J., Younes, L., McVeigh, E.R., Winslow, R.L.: Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn. Res. Med. 54, 850–859 (2005)

    Article  Google Scholar 

  18. Van Leemput, Maes, K., Vandermeulen, F., et al.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans. on Medical Imaging 20(8), 677–688 (2001)

    Article  Google Scholar 

  19. Arts, T., Costa, K.D., Covell, J.W., et al.: Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Cardiovascular Research Institute 280(5), 2222–2229 (2001)

    Google Scholar 

  20. Tilg, B., Fischer, G., Modre, R., Hanser, F., et al.: Model-based imaging of cardiac electrical excitation in humans. IEEE Transactions on Medical Imaging 21(9), 1031–1039 (2002)

    Article  Google Scholar 

  21. Pop, M., Sermesant, M., Lepiller, D., et al.: Fusion of optical imaging and MRI for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: a feasibility study. Medical Image Analysis (2008) (July 25, E-Pub. ahead of print)

    Google Scholar 

  22. Jay, D.S., Stainsby, J.A., Vijayaraghavan, R., Graham, J.J., Dick, A.J., Wright, G.A.: Inversion-recovery-prepared SSFP for cardiac-phase-resolved delayed-enhancement MRI. Magn. Res. Med. 58(2), 365–372 (2007)

    Article  Google Scholar 

  23. Sermesant, M., Peyrat, J.M., Chinchapatnam, P., Billet, F., Mansi, T., Rhode, K., et al.: Toward patient-specific myocardial models of the heart. Heart Fail Clin. 4(3), 289–301 (2008)

    Article  Google Scholar 

  24. Strauss, D.G., Wu, K.C.: Imaging myocardial scar and arrhythmic risk prediction – a role for the electrocardiogram? J. Electrocardiol. 42(2), 138.e1–8 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pop, M. et al. (2009). Characterization of Post-infarct Scars in a Porcine Model – A Combined Experimental and Theoretical Study. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01932-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01931-9

  • Online ISBN: 978-3-642-01932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics