Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Statistical Approach for Detecting Tubular Structures in Myocardial Infarct Scars

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5528))

  • 2262 Accesses

Abstract

The presence of an infarct scar in the heart generates abnormal electrical pathways that may trigger the occurrence of arrhythmic episodes. While precise models of the electric propagation in the heart have been proposed, we are just starting to observe and analyze infarct scars using high-resolution imaging techniques. Recent observations have shown that the scar is a highly heterogeneous tissue, characterized by a complex interface with surrounding myocardium. For instance, the infarct scar is perforated by tunnels of live tissue, which could generate abnormal activation pathways and therefore facilitate arrhythmia episodes. In order to characterize the role of such structures, we need to first delineate them. In this paper, we propose an automatic method for the detection of these tunnels of normal tissue through scars in high resolution MR images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lombardi, F.: Timing of arrhythmic death after myocardial infarction: does it affect timing of ICD implantation? Eur. Heart Journal 26(14), 1350–1352 (2005)

    Article  Google Scholar 

  2. Kim, R., Fieno, D., Parrish, T., Harris, K., Chen, E.L., Simonetti, O., Bundy, J., Finn, P., Klocke, F., Judd, R.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19), 1992–2002 (1999)

    Article  Google Scholar 

  3. Klocke, F., Wu, E., Lee, D.: “Shades of gray” in cardiac magnetic resonance images of infarcted myocardium. Circulation 114, 8–10 (2006)

    Article  Google Scholar 

  4. Schuleri, K., Centola, M., George, R., Amado, L., Evers, K., Kitagawa, K., Vavere, A., Evers, R., Hare, J., McVeigh, E., Lima, J., Lardo, A.: Characterization of peri-infarct zone heterogeneity by contrast enhanced multi-detector CT: Comparison with MR imaging. J. Am. Coll. Cardiol. (in press)

    Google Scholar 

  5. Yan, A., Shayne, A., Brown, K., Gupta, S., Chan, C., Luu, T., Carli, M.D., Reynolds, H., Stevenson, W., Kwong, R.: Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 114, 32–39 (2006)

    Article  Google Scholar 

  6. Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Computing Surveys 36(2), 81–121 (2004)

    Article  Google Scholar 

  7. Mahadevan, V., Narasimha-Iyer, H., Roysam, B., Tanenbaum, H.: Robust model-based vasculature detection in noisy biomedical images. IEEE Trans. Inform. Technol. Biomed. 8(3), 360–376 (2004)

    Article  Google Scholar 

  8. Wörz, S., Rohr, K.: A new 3D parametric intensity model for accurate segmentation and quantification of human vessels. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 491–499. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Can, A., Shen, H., Turner, J., Tanenbaum, H., Roysam, B.: Rapid automated tracing and feature extraction from live high-resolution retinal fundus images using direct exploratory algorithms. IEEE Trans. Pattern Anal. Machine Intell. 25(2), 125–138 (1999)

    Google Scholar 

  10. Aylward, S., Weeks, S., Bullitt, E.: Analysis of the parameter space of a metric for registering 3D vascular images. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 932–939. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Sato, Y., Araki, T., Hanayama, M., Naito, H., Tamura, S.: A viewpoint determination system for stenosis diagnosis and quantification in coronary angiographic image acquisition. IEEE Trans. on Med. Imag. 17, 121–137 (1998)

    Article  Google Scholar 

  12. Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Jackowski, M., Papademetris, X., Dobrucki, L., Sinusas, A., Staib, L.: Characterizing vascular connectivity from microCT images. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 701–708. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Sofka, M., Stewart, C.: Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Trans. Med. Imag. 25(12), 1531–1546 (2006)

    Article  Google Scholar 

  15. Geman, D., Jedynak, B.: An active testing model for tracking roads from satellite images. IEEE Trans. Pattern Anal. Mach. Intell. 18, 1–14 (1996)

    Article  Google Scholar 

  16. Qian, X., Brennan, M., Dione, D., Dubrucki, W., Jackowski, M., Breuer, C., Sinusas, A.J., Papademitris, X.: A non-parametric vessel detection method for complex vascular structures. Med. Imag. Anal. 13, 49–61 (2009)

    Article  Google Scholar 

  17. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. Journal of Royal Statistical Society 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vidal, C., Ashikaga, H., McVeigh, E.R. (2009). A Statistical Approach for Detecting Tubular Structures in Myocardial Infarct Scars. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01932-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01931-9

  • Online ISBN: 978-3-642-01932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics