Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximation Algorithm for Minimizing the Weighted Number of Tardy Jobs on a Batch Machine

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5573))

Abstract

We consider the problem of minimizing the weighted number of tardy jobs (\(\sum_{j=1}^{n}w_jU_j\)) on an unbounded batch processing machine. The batch processing machine can process up to B (B ≥ n) jobs simultaneously. The jobs that are processed together form a batch, and all jobs in a batch start and complete at the same time. For a batch of jobs, the processing time of the batch is equal to the largest processing time among the jobs in this batch. In this paper, we design a fully polynomial time approximation scheme (FPTAS) to solve the unbounded batch scheduling problem \(1|B\geq n|\sum_{j=1}^{n}w_jU_j.\) This is the strongest possible polynomial time approximation result that we can derive for an NP-hard problem (unless P = NP holds).

Supported by the National Natural Science Foundation (Grant Number 10671108) and the Natural Science Foundation of Shandong Province (Grant Number Y2005A04).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baptiste, P.: Polynomial Time Algorithms for Minimizing the Weighted Number of Late Jobs on a Single Machine with Equal Processing Times. Journal of Scheduling 2, 245–252 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brucker, P., Gladky, A., Hoogeveen, H., Kovalyov, M.Y., Potts, C.N., Tautenhahn, T., Van De Velde, S.: Scheduling a Batching Machine. Journal of Scheduling 1, 31–54 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deng, X., Zhang, Y.: Minizing Mean Response Time in Batch Processing System. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 231–240. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey. Ann Disc Math 5, 287–326 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lawler, E.L.: A Dynamic Programming Algorithm for Preemptive Scheduling of a Single Machine To Minimize the Number of Late Jobs. Annals of Operation Research 26, 125–133 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lawler, E.L., Moore, J.M.: A Functional Equation and Its Application to Resource Allocation and Sequencing Problems. Management Science 16, 77–84 (1996)

    Article  MATH  Google Scholar 

  7. Lee, C.Y., Uzsoy, R., Martin Vega, L.A.: Efficient Algorithms for Scheduling Semiconductor Burn-in Operations. Operation Research 40, 764–775 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, Z., Yuan, J., Edwin Cheng, T.C.: On Schedulimg an Unbounded Batch Machine. Operations Research Letters 31, 42–48 (2003)

    Article  MathSciNet  Google Scholar 

  9. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1992)

    Google Scholar 

  10. Woeginger, G.J.: When Does a Dynamic Programming Formulation Guarantee the Existence of an FPTAS. Technical Report Woe-27. Tu-Graz, Austria (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ren, J., Zhang, Y., Zhang, X., Sun, G. (2009). Approximation Algorithm for Minimizing the Weighted Number of Tardy Jobs on a Batch Machine. In: Du, DZ., Hu, X., Pardalos, P.M. (eds) Combinatorial Optimization and Applications. COCOA 2009. Lecture Notes in Computer Science, vol 5573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02026-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02026-1_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02025-4

  • Online ISBN: 978-3-642-02026-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics