Abstract
Collaborative tagging systems have recently emerged as one of the rapidly growing web 2.0 applications. The informal social classification structure in these systems, also known as folksonomy, provides a convenient way to annotate resources by allowing users to use any keyword or tag that they find relevant. In turn, the flat and non-hierarchical structure with unsupervised vocabularies leads to low search precision and poor resource navigation and retrieval. This drawback has created the need for ontological structures which provide shared vocabularies and semantic relations for translating and integrating the different sources. In this paper, we propose an integrated approach for extracting ontological structure from folksonomies that exploits the power of low support association rule mining supplemented by an upper ontology such as WordNet.
Chapter PDF
Similar content being viewed by others
References
Auchard, E.: Flickr to map the world’s latest photo hotspots. Reuters.com (2007)
Vander, T.: Folksonomy Coinage and Definition (2007), http://www.vanderwal.net/folksonomy.html
Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
Wikipedia: Tag cloud. Wikipedia, The Free Encyclopedia (2009)
Suchanek, F.M., Vojnovic, M., Gunawardena, D.: Social tags: Meaning and Suggestions. In: ACM Conference on Information and Knowledge Management (CIKM 2008), pp. 223–232. ACM, Napa (2008)
Mathes, A.: Folksonomies-Cooperative Classification and Communication Through Shared Metadata. Computer Mediated Communication, LIS590CMC (2004)
Stuckenschmidt, H., Harmelen, F.V.: Information Sharing on the Semantic Web. Springer, Heidelberg (2005)
A1-Khalifa, S., Davis, C.: Measuring the Semantic Value of Folksonomies. Innovations in Information Technology (2006)
Mika, P.: Ontologies are us: A unified model of social networks and semantics. Web Semantics 5, 5–15 (2007)
Heymann, P., Garcia-Molina, H.: Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems. Stanford InfoLab Technical Report (2006)
Schmitz, C., Hotho, A., Jäschke, R., Stumme, G.: Mining Association Rules in Folksonomies. In: Proceedings of the 10th IFCS Conference, Studies in Classification, Data Analysis, and Knowledge Organization (2006)
Schwarzkopf, E., Heckmann, D., Dengler, D., Kroner, A.: Mining the Structure of Tag Spaces for User Modeling. In: Workshop on Data Mining for User Modeling (ICUM 2007) (2007)
Specia, L., Motta, E.: Integrating Folksonomies with the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer, Heidelberg (2007)
Damme, C.V., Hepp, M., Siorpaes, K.: FolksOntology: An Integrated Approach for Turning Folksonomies into Ontologies. In: Proc. of the ESWC Workshop Bridging the Gap between Semantic Web and Web (2007)
An, Y.J., Geller, J., Wu, Y.-T., Chun, S.A.: Automatic Generation of Ontology from the Deep Web. Database and Expert Systems IEEE 2007 (2007)
Laniado, D., Eynard, D., Colombetti, M.: Using WordNet to turn a folksonomy into a hierarchy of concepts. In: Proc. of 4th Italian Semantic Web Workshop, Italy (2007)
Schreiber, A.T.G., Dubbeldam, B., Wielemaker, J., Wielinga, B.: Ontology-Based Photo Annotation. IEEE Intelligent Systems (2001)
Schmitz, P.: Inducing Ontology from Flickr Tags. In: Proceedings of the Collaborative Web Tagging Workshop (WWW 2006), Edinburgh, UK (2006)
Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data (1993)
Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of the 20th International Conference on Very Large Data Bases (1994)
Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Motwani, R., Ullman, J., Yang, C.: Finding interesting associations without support pruning. Transactions on Knowledge and Data Engineering 13, 64–78 (2001)
Spertus, E., Sahami, M., Buyukkokten, O.: Evaluating similarity measures: a large-scale study in the orkut social network. In: Proceedings of the 11th ACM SIGKDD intl. conference on Knowledge Discovery in Data mining, Chicago, USA (2005)
Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986)
Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an Algorithm and an Implementation of Semantic Matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)
Wallace, M.: Jawbone (2007), http://mfwallace.googlepages.com/jawbone.html
Dellschaft, K., Staab, S.: Strategies for the evaluation of ontology learning. In: Buitelaar, P., Cimiano, P. (eds.) Ontology learning and population: Bridging the gap between text and knowledge. IOS Press, Amsterdam (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lin, H., Davis, J., Zhou, Y. (2009). An Integrated Approach to Extracting Ontological Structures from Folksonomies. In: Aroyo, L., et al. The Semantic Web: Research and Applications. ESWC 2009. Lecture Notes in Computer Science, vol 5554. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02121-3_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-02121-3_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02120-6
Online ISBN: 978-3-642-02121-3
eBook Packages: Computer ScienceComputer Science (R0)