Abstract
This paper presents an approach to label and track multiple objects through both temporally and spatially significant occlusions. The proposed method builds on the idea of object permanence to reason about occlusion. To this end, tracking is performed at both the region level and the object level. At the region level, a kernel based particle filter method is used to search for optimal region tracks. At the object level, each object is located based on adaptive appearance models, spatial distributions and inter-occlusion relationships. Region covariance matrices are used to model objects appearance. We analyzed the advantages of using Gabor functions as features and embedded them in the RCMs to get a more accurate descriptor. The proposed architecture is capable of tracking multiple objects even in the presence of periods of full occlusions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chang, C., Ansari, R.: Kernel particle filter for visual tracking (2005)
Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE PAMI, 17(8) (1995)
Batista, J., Palaio, H.: Multi-object tracking using an adaptative transition model particle filter with region covariance data association. In: ICPR (2008)
Kälviäinen, H., Kamarainen, J.K., Kyrki, V.: Fundamental frequency gabor filters for object recognition. In: ICPR (2002)
Maggio, E., Cavallaro, A.: Hybrid particle filter and mean shift tracker with adaptive transition model. In: Proc. of IEEE Signal Processing Society International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia, PA, USA, March 19–23 (2005)
Santos-Victor, J., Moreno, P., Bernardino, A.: Gabor parameter selection for local feature detection. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 11–19. Springer, Heidelberg (2005)
Yuan, Y., Pang, Y., Li, X.: Histograms of oriented gradients for human detection, vol. 18 (2008)
Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing. In: IJCV (2006)
Porikli, F., Kocak, T.: Robust licence plate detection using covariance descriptor in a neural network framework. In: Proc. AVSS (2006)
Porikli, F., Tuzel, O., Meer, P.: Covariance tracking using model update based on means on riemannian. In: Proc. IEEE CVPR (2006)
Tao, H., Sawhney, H.S., Kumar, R.: A sampling algorithm for tracking multiple objects. In: Workshop on Vision Algorithms (1999)
Tuzel, O., Porikli, F., Meer, P.: Region covariance: A fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)
Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on riemannian manifolds. In: Proc. IEEE CVPR (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Palaio, H., Batista, J. (2009). Kernel Based Multi-object Tracking Using Gabor Functions Embedded in a Region Covariance Matrix. In: Araujo, H., Mendonça, A.M., Pinho, A.J., Torres, M.I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2009. Lecture Notes in Computer Science, vol 5524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02172-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-02172-5_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02171-8
Online ISBN: 978-3-642-02172-5
eBook Packages: Computer ScienceComputer Science (R0)