Abstract
Guided Kanade-Lucas-Tomasi (GKLT) feature tracking offers a way to perform KLT tracking for rigid scenes using known camera parameters as prior knowledge, but requires manual control of uncertainty. The uncertainty of prior knowledge is unknown in general. We present an extended modeling of GKLT that overcomes the need of manual adjustment of the uncertainty parameter. We establish an extended optimization error function for GKLT feature tracking, from which we derive extended parameter update rules and a new optimization algorithm in the context of KLT tracking. By this means we give a new formulation of KLT tracking using known camera parameters originating, for instance, from a controlled environment. We compare the extended GKLT tracking method with the original GKLT and the standard KLT tracking using real data. The experiments show that the extended GKLT tracking performs better than the standard KLT and reaches an accuracy up to several times better than the original GKLT with an improperly chosen value of the uncertainty parameter.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Wenhardt, S., Deutsch, B., Angelopoulou, E., Niemann, H.: Active Visual Object Reconstruction using D-, E-, and T-Optimal Next Best Views. In: Computer Vision and Pattern Recognition, CVPR 2007, June 2007, pp. 1–7 (2007)
Chen, S.Y., Li, Y.F.: Vision Sensor Planning for 3D Model Acquisition. IEEE Transactions on Systems, Man and Cybernetics – B 35(4), 1–12 (2005)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of 7th International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)
Baker, S., Matthews, I.: Lucas-Kanade 20 Years On: A Unifying Framework. International Journal of Computer Vision 56, 221–255 (2004)
Fusiello, A., Trucco, E., Tommasini, T., Roberto, V.: Improving feature tracking with robust statistics. Pattern Analysis and Applications 2, 312–320 (1999)
Zinsser, T., Graessl, C., Niemann, H.: High-speed feature point tracking. In: Proceedings of Conference on Vision, Modeling and Visualization (2005)
Heigl, B.: Plenoptic Scene Modelling from Uncalibrated Image Sequences. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2003)
Trummer, M., Denzler, J., Munkelt, C.: KLT Tracking Using Intrinsic and Extrinsic Camera Parameters in Consideration of Uncertainty. In: Proceedings of 3rd International Conference on Computer Vision Theory and Applications (VISAPP), vol. 2, pp. 346–351 (2008)
Trummer, M., Denzler, J., Munkelt, C.: Guided KLT Tracking Using Camera Parameters in Consideration of Uncertainty. Lecture Notes in Communications in Computer and Information Science (CCIS). Springer, Heidelberg (to appear)
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data. Journal of the Royal Statistical Society 39, 1–38 (1977)
Kuehmstedt, P., Munkelt, C., Matthins, H., Braeuer-Burchardt, C., Notni, G.: 3D shape measurement with phase correlation based fringe projection. In: Osten, W., Gorecki, C., Novak, E.L. (eds.) Optical Measurement Systems for Industrial Inspection V, vol. 6616, p. 66160B. SPIE (2007)
Walker, M.W., Shao, L., Volz, R.A.: Estimating 3-D location parameters using dual number quaternions. CVGIP: Image Understanding 54(3), 358–367 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Trummer, M., Munkelt, C., Denzler, J. (2009). Extending GKLT Tracking—Feature Tracking for Controlled Environments with Integrated Uncertainty Estimation. In: Salberg, AB., Hardeberg, J.Y., Jenssen, R. (eds) Image Analysis. SCIA 2009. Lecture Notes in Computer Science, vol 5575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02230-2_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-02230-2_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02229-6
Online ISBN: 978-3-642-02230-2
eBook Packages: Computer ScienceComputer Science (R0)