Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Method to Minimize Distributed PSO Algorithm Execution Time in Grid Computer Environment

  • Conference paper
Bioinspired Applications in Artificial and Natural Computation (IWINAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5602))

  • 1004 Accesses

Abstract

This paper introduces a method to minimize distributed PSO algorithm execution time in a grid computer environment, based on a reduction in the information interchanged among the demes involved in the process of finding the best global fitness solution. Demes usually interchange the best global fitness solution they found at each iteration. Instead of this, we propose to interchange information only after an specified number of iterations are concluded. By applying this technique, it is possible to get a very significant execution time decrease without any loss of solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bratton, D., Kennedy, J.: Defining a Standard for Particle Swarm Optimization. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007) (2007)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948. IEEE Service Center, Pistcataway (1995)

    Google Scholar 

  3. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann Publisher, San Francisco (2001)

    Google Scholar 

  4. Kennedy, J.: Stereotyping: improving particle swarm performance with cluster analysis. In: Proceedins of the IEEE International Conference on Evolutionary Computation, pp. 1507–1512 (2000)

    Google Scholar 

  5. Kennedy, J., Mendes, R.: Neighborhood topologies in fully informed and best-of-neighbothood particle swarms. IEE Transations on Systems, Man and Cybernetics, Part C: Applications and Reviews 36(4), 515–519 (2006)

    Article  Google Scholar 

  6. Liu, D.S., Tan, K.C., Ho, W.K.: A Distributed Co-evolutionary Particle Swarm Optimization Algorithm. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007) (2007)

    Google Scholar 

  7. Guha, T., Ludwig, S.A.: Comparison of Service Selection Algorithms for Grid Services: Multiple Objetive Particle Swarm Optimization and Constraint Satisfaction Based Service Selection. In: Proceedings - International Conference on Tools with Artificial Intelligence (ICTAI 1, art. no. 4669686), pp. 172–179 (2008)

    Google Scholar 

  8. Jiao, B., Lian, Z., Gu, X.: A dinamic inertia weight particle swarm optimization algorithm. Chaos, Solitons and Fractals 37, 698–705 (2008)

    Article  MATH  Google Scholar 

  9. Scriven, I., Lewis, A., Ireland, D., Junwei, L.: Decentralised Distributed Multiple Objective Particle Swarm Optimisation Using Peer to Peer Networks. In: IEEE Congress on Evolutionary Computation, CEC 2008, art. no. 4631191, pp. 2925–2928 (2008)

    Google Scholar 

  10. Burak Atat, S., Gazi, V.: Decentralized Asynchronous Particle Swarm Optimization. In: IEEE Swarm Intelligence Symposium, SIS 2008, art. no. 4668304 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parra, F., Galan, S.G., Yuste, A.J., Prado, R.P., Muñoz, J.E. (2009). A Method to Minimize Distributed PSO Algorithm Execution Time in Grid Computer Environment. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Bioinspired Applications in Artificial and Natural Computation. IWINAC 2009. Lecture Notes in Computer Science, vol 5602. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02267-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02267-8_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02266-1

  • Online ISBN: 978-3-642-02267-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics