Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Non-dominated Multi-objective Evolutionary Algorithm Based on Fuzzy Rules Extraction for Subgroup Discovery

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5572))

Included in the following conference series:

  • 1729 Accesses

Abstract

A new multi-objective evolutionary model for subgroup discovery with fuzzy rules is presented in this paper. The method resolves subgroup discovery problems based on the hybridization between fuzzy logic and genetic algorithms, with the aim of extracting interesting, novel and interpretable fuzzy rules. To do so, the algorithm includes different mechanisms for improving diversity in the population. This proposal focuses on the classification of individuals in fronts, based on non-dominated sort. A study can be seen for the proposal and other previous methods for different databases. In this study good results are obtained for subgroup discovery by this new evolutionary model in comparison with existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imieliski, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD 1993, New York, NY, USA, pp. 207–216 (1993)

    Google Scholar 

  2. Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: KEEL: A Software Tool to Assess Evolutionary Algorithms for Data Mining Problems Soft Computing 13(3), 307–318 (2009)

    Google Scholar 

  3. Berlanga, F., del Jesus, M.J., González, P., Herrera, F., Mesonero, M.: Multiobjective Evolutionary Induction of Subgroup Discovery Fuzzy Rules: A Case Study in Marketing. In: Perner, P. (ed.) ICDM 2006. LNCS, vol. 4065, pp. 337–349. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Coello, C.A., Van Veldzhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Kluwer Academic Publishers, Dordrecht (2007)

    MATH  Google Scholar 

  5. Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases (2001)

    Google Scholar 

  6. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. del Jesus, M.J., González, P., Herrera, F., Mesonero, M.: Evolutionary Fuzzy Rule Induction Process for Subgroup Discovery: A case study in marketing. IEEE Transactions on Fuzzy Systems 15(4), 578–592 (2007)

    Article  Google Scholar 

  8. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. Advances in knowledge discovery and data mining, pp.1–34 (1996)

    Google Scholar 

  9. Gamberger, D., Lavraĉ, N.: Expert-Guided Subgroup Discovery: Methodology and Application. Journal Artificial Intelligence Research 17, 501–527 (2002)

    MATH  Google Scholar 

  10. Golberg, D.E.: Genetic Algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  11. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press (1975)

    Google Scholar 

  12. Hüllermeier, E.: Fuzzy methods in machine learning and data mining: Status and prospects. Fuzzy Sets and Systems 156(3), 387–406 (2005)

    Article  MathSciNet  Google Scholar 

  13. Kavsêk, B., Lavrâc, N.: APRIORI-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence 20, 543–583 (2006)

    Article  Google Scholar 

  14. Klösgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant. In: Fayyad, U., et al. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)

    Google Scholar 

  15. Lavraĉ, N., Kavŝek, B., Flach, P.A., Todorovski, L.: Subgroup Discovery with CN2-SD. Journal of Machine Learning Research 5, 153–188 (2004)

    MathSciNet  Google Scholar 

  16. Michie, D., Spiegelhalter, D.J., Tayloy, C.C.: Machine Learning. Ellis Horwood (1994)

    Google Scholar 

  17. Miller, B.L., Goldberg, D.E.: Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex System 9, 193–212 (1995)

    MathSciNet  Google Scholar 

  18. Romero, C., González, P., Ventura, S., del Jesus, M.J., Herrera, F.: Evolutionary algorithm for subgroup discovery in e-learning: A practical application using Moodle data. Expert Systems with Applications 36, 1632–1644 (2009)

    Article  Google Scholar 

  19. Wröbel, S.: An Algorithm for Multi-relational Discovery of Subgroups. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  20. Zadeh, L.A.: The concept of a linguistic variable and its applications to approximate reasoning, Parts I, II, III. Information Science 8-9, 199–249, 301–357,43–80 (1975)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carmona, C.J., González, P., del Jesus, M.J., Herrera, F. (2009). Non-dominated Multi-objective Evolutionary Algorithm Based on Fuzzy Rules Extraction for Subgroup Discovery. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds) Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science(), vol 5572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02319-4_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02318-7

  • Online ISBN: 978-3-642-02319-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics