Abstract
A new multi-objective evolutionary model for subgroup discovery with fuzzy rules is presented in this paper. The method resolves subgroup discovery problems based on the hybridization between fuzzy logic and genetic algorithms, with the aim of extracting interesting, novel and interpretable fuzzy rules. To do so, the algorithm includes different mechanisms for improving diversity in the population. This proposal focuses on the classification of individuals in fronts, based on non-dominated sort. A study can be seen for the proposal and other previous methods for different databases. In this study good results are obtained for subgroup discovery by this new evolutionary model in comparison with existing algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imieliski, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD 1993, New York, NY, USA, pp. 207–216 (1993)
Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: KEEL: A Software Tool to Assess Evolutionary Algorithms for Data Mining Problems Soft Computing 13(3), 307–318 (2009)
Berlanga, F., del Jesus, M.J., González, P., Herrera, F., Mesonero, M.: Multiobjective Evolutionary Induction of Subgroup Discovery Fuzzy Rules: A Case Study in Marketing. In: Perner, P. (ed.) ICDM 2006. LNCS, vol. 4065, pp. 337–349. Springer, Heidelberg (2006)
Coello, C.A., Van Veldzhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Kluwer Academic Publishers, Dordrecht (2007)
Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases (2001)
Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions Evolutionary Computation 6(2), 182–197 (2002)
del Jesus, M.J., González, P., Herrera, F., Mesonero, M.: Evolutionary Fuzzy Rule Induction Process for Subgroup Discovery: A case study in marketing. IEEE Transactions on Fuzzy Systems 15(4), 578–592 (2007)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. Advances in knowledge discovery and data mining, pp.1–34 (1996)
Gamberger, D., Lavraĉ, N.: Expert-Guided Subgroup Discovery: Methodology and Application. Journal Artificial Intelligence Research 17, 501–527 (2002)
Golberg, D.E.: Genetic Algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)
Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press (1975)
Hüllermeier, E.: Fuzzy methods in machine learning and data mining: Status and prospects. Fuzzy Sets and Systems 156(3), 387–406 (2005)
Kavsêk, B., Lavrâc, N.: APRIORI-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence 20, 543–583 (2006)
Klösgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant. In: Fayyad, U., et al. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)
Lavraĉ, N., Kavŝek, B., Flach, P.A., Todorovski, L.: Subgroup Discovery with CN2-SD. Journal of Machine Learning Research 5, 153–188 (2004)
Michie, D., Spiegelhalter, D.J., Tayloy, C.C.: Machine Learning. Ellis Horwood (1994)
Miller, B.L., Goldberg, D.E.: Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex System 9, 193–212 (1995)
Romero, C., González, P., Ventura, S., del Jesus, M.J., Herrera, F.: Evolutionary algorithm for subgroup discovery in e-learning: A practical application using Moodle data. Expert Systems with Applications 36, 1632–1644 (2009)
Wröbel, S.: An Algorithm for Multi-relational Discovery of Subgroups. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)
Zadeh, L.A.: The concept of a linguistic variable and its applications to approximate reasoning, Parts I, II, III. Information Science 8-9, 199–249, 301–357,43–80 (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Carmona, C.J., González, P., del Jesus, M.J., Herrera, F. (2009). Non-dominated Multi-objective Evolutionary Algorithm Based on Fuzzy Rules Extraction for Subgroup Discovery. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds) Hybrid Artificial Intelligence Systems. HAIS 2009. Lecture Notes in Computer Science(), vol 5572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_69
Download citation
DOI: https://doi.org/10.1007/978-3-642-02319-4_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02318-7
Online ISBN: 978-3-642-02319-4
eBook Packages: Computer ScienceComputer Science (R0)