Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

True Path Rule Hierarchical Ensembles

  • Conference paper
Multiple Classifier Systems (MCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5519))

Included in the following conference series:

Abstract

Hierarchical classification problems gained increasing attention within the machine learning community, and several methods for hierarchically structured taxonomies have been recently proposed, with applications ranging from classification of web documents to bioinformatics. In this paper we propose a novel ensemble algorithm for multilabel, multi-path, tree-structured hierarchical classification problems based on the true path rule borrowed from the Gene Ontology. Local base classifiers, each specialized to recognize a single class of the hierarchy, exchange information between them to achieve a global “consensus” ensemble decision. A two-way asymmetric flow of information crosses the tree-structured ensemble: positive predictions for a node influence its ancestors, while negative predictions influence its offsprings. The resulting True Path Rule hierarchical ensemble is applied to the prediction of gene function in the yeast, using the FunCat taxonomy and biomolecular data obtained from high-throughput biotechnologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dumais, S., Chen, H.: Hierarchical classification of web content. In: Proc. of the 23rd ACM Int. Conf. on Research and Development in Information Retrieval, pp. 256–263. ACM Press, New York (2000)

    Google Scholar 

  2. Rousu, J., et al.: Learning hierarchical multi-category text classification models. In: Proc. of the 22nd ICML, pp. 745–752. OmniPress (2005)

    Google Scholar 

  3. Barutcuoglu, Z., Schapire, R., Troyanskaya, O.: Hierarchical multi-label prediction of gene function. Bioinformatics 22, 830–836 (2006)

    Article  Google Scholar 

  4. Guan, Y., et al.: Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biology 9 (2008)

    Google Scholar 

  5. Ruepp, A., et al.: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucl. Ac. Res. 32, 5539–5545 (2004)

    Article  Google Scholar 

  6. Dekel, O., Keshet, J., Singer, Y.: Large margin hierarchical classification. In: Proc. of the 21st ICML, pp. 209–216. Omnipress (2004)

    Google Scholar 

  7. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Hierarchical classification: Combining Bayes with SVM. In: Proc. of the 23rd ICML, pp. 177–184. ACM Press, New York (2006)

    Google Scholar 

  8. The Gene Ontology Consortium: Gene ontology: tool for the unification of biology. Nature Genet. 25, 25–29 (2000)

    Google Scholar 

  9. Valentini, G., Cesa-Bianchi, N.: Hcgene: a software tool to support the hierarchical classification of genes. Bioinformatics 24, 729–731 (2008)

    Article  Google Scholar 

  10. Ben-Hur, A., Noble, W.: Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics 7 (2006)

    Google Scholar 

  11. Finn, R., et al.: The Pfam protein families database. Nucl. Ac. Res. 36, D281–D288 (2008)

    Article  Google Scholar 

  12. Eddy, S.: Profile hidden markov models. Bioinformatics 14, 755–763 (1998)

    Article  Google Scholar 

  13. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment search tool. Journal of Molecular Biology 215 (1990)

    Google Scholar 

  14. Pavlidis, P., Weston, J., Cai, J., Noble, W.: Learning gene functional classification from multiple data. J. Comput. Biol. 9, 401–411 (2002)

    Article  Google Scholar 

  15. Spellman, P., et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomices cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998)

    Article  Google Scholar 

  16. Gasch, P., et al.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000)

    Article  Google Scholar 

  17. Stark, C., et al.: BioGRID: a general repository for interaction datasets. Nucl. Ac. Res. 34, D535–D539 (2006)

    Article  Google Scholar 

  18. Lin, H., Lin, C., Weng, R.: A note on Platt’s probabilistic outputs for support vector machines. Machine Learning 68, 267–276 (2007)

    Article  Google Scholar 

  19. Dietterich, T.: Approximate statistical test for comparing supervised classification learning algorithms. Neural Computation 10, 1895–1924 (1998)

    Article  Google Scholar 

  20. Pena-Castillo, L., et al.: A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biology 9 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valentini, G. (2009). True Path Rule Hierarchical Ensembles. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2009. Lecture Notes in Computer Science, vol 5519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02326-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02326-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02325-5

  • Online ISBN: 978-3-642-02326-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics