Abstract
Hierarchical classification problems gained increasing attention within the machine learning community, and several methods for hierarchically structured taxonomies have been recently proposed, with applications ranging from classification of web documents to bioinformatics. In this paper we propose a novel ensemble algorithm for multilabel, multi-path, tree-structured hierarchical classification problems based on the true path rule borrowed from the Gene Ontology. Local base classifiers, each specialized to recognize a single class of the hierarchy, exchange information between them to achieve a global “consensus” ensemble decision. A two-way asymmetric flow of information crosses the tree-structured ensemble: positive predictions for a node influence its ancestors, while negative predictions influence its offsprings. The resulting True Path Rule hierarchical ensemble is applied to the prediction of gene function in the yeast, using the FunCat taxonomy and biomolecular data obtained from high-throughput biotechnologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dumais, S., Chen, H.: Hierarchical classification of web content. In: Proc. of the 23rd ACM Int. Conf. on Research and Development in Information Retrieval, pp. 256–263. ACM Press, New York (2000)
Rousu, J., et al.: Learning hierarchical multi-category text classification models. In: Proc. of the 22nd ICML, pp. 745–752. OmniPress (2005)
Barutcuoglu, Z., Schapire, R., Troyanskaya, O.: Hierarchical multi-label prediction of gene function. Bioinformatics 22, 830–836 (2006)
Guan, Y., et al.: Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biology 9 (2008)
Ruepp, A., et al.: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucl. Ac. Res. 32, 5539–5545 (2004)
Dekel, O., Keshet, J., Singer, Y.: Large margin hierarchical classification. In: Proc. of the 21st ICML, pp. 209–216. Omnipress (2004)
Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Hierarchical classification: Combining Bayes with SVM. In: Proc. of the 23rd ICML, pp. 177–184. ACM Press, New York (2006)
The Gene Ontology Consortium: Gene ontology: tool for the unification of biology. Nature Genet. 25, 25–29 (2000)
Valentini, G., Cesa-Bianchi, N.: Hcgene: a software tool to support the hierarchical classification of genes. Bioinformatics 24, 729–731 (2008)
Ben-Hur, A., Noble, W.: Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics 7 (2006)
Finn, R., et al.: The Pfam protein families database. Nucl. Ac. Res. 36, D281–D288 (2008)
Eddy, S.: Profile hidden markov models. Bioinformatics 14, 755–763 (1998)
Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment search tool. Journal of Molecular Biology 215 (1990)
Pavlidis, P., Weston, J., Cai, J., Noble, W.: Learning gene functional classification from multiple data. J. Comput. Biol. 9, 401–411 (2002)
Spellman, P., et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomices cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998)
Gasch, P., et al.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000)
Stark, C., et al.: BioGRID: a general repository for interaction datasets. Nucl. Ac. Res. 34, D535–D539 (2006)
Lin, H., Lin, C., Weng, R.: A note on Platt’s probabilistic outputs for support vector machines. Machine Learning 68, 267–276 (2007)
Dietterich, T.: Approximate statistical test for comparing supervised classification learning algorithms. Neural Computation 10, 1895–1924 (1998)
Pena-Castillo, L., et al.: A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biology 9 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Valentini, G. (2009). True Path Rule Hierarchical Ensembles. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2009. Lecture Notes in Computer Science, vol 5519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02326-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-02326-2_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02325-5
Online ISBN: 978-3-642-02326-2
eBook Packages: Computer ScienceComputer Science (R0)