Abstract
In [LJ06] Lorenz and Juhás raised the question of whether there exists a suitable formalism for the representation of infinite families of partial orders generated by Petri nets. Restricting ourselves to bounded p/t-nets, we propose Hasse diagram generators as an answer. We show that Hasse diagram generators are expressive enough to represent the partial order language of any bounded p/t net. We prove as well that it is decidable both whether the (possible infinite) family of partial orders represented by a given Hasse diagram generator is included on the partial order language of a given p/t-net and whether their intersection is empty. Based on this decidability result, we prove that the partial order languages of two given Petri nets can be effectively compared with respect to inclusion. Finally we address the synthesis of k-safe p/t-nets from Hasse diagram generators.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)
Bergenthum, R., Desel, J., Juhás, G., Lorenz, R.: Can I execute my scenario in your net? viptool tells you! In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 381–390. Springer, Heidelberg (2006)
Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets from scenarios with viptool. In: van Hee, K.M., Valk, R. (eds.) ICATPN 2008. LNCS, vol. 5062, pp. 388–398. Springer, Heidelberg (2008)
Best, E., Wimmel, H.: Reducing k-safe petri nets to pomset-equivalent 1-safe petri nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 63–82. Springer, Heidelberg (2000)
Darondeau, P.: Deriving Unbounded Petri Nets from Formal Languages. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 533–548. Springer, Heidelberg (1998)
Darondeau, P.: Region based synthesis of P/T-nets and its potential applications. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 16–23. Springer, Heidelberg (2000)
Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51, 161–166 (1950)
Badouel, E., Darondeau, P.: On the synthesis of general petri nets. Technical Report PI-1061, IRISA (November 1996)
Goltz, U., Reisig, W.: Processes of place/transition nets. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 264–277. Springer, Heidelberg (1983)
Juhás, G., Lorenz, R., Desel, J.: Can I execute my scenario in your net? In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 289–308. Springer, Heidelberg (2005)
Lorenz, R., Bergenthum, R., Desel, J.: Synthesis of petri nets from infinite partial languages. In: ACSD, pp. 170–179 (2008)
Lorenz, R., Bergenthum, R., Desel, J., Mauser, S.: Synthesis of petri nets from finite partial languages. In: Proceedings of ACSD, pp. 157–166 (2007)
Lorenz, R., Juhás, G.: Towards synthesis of petri nets from scenarios. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 302–321. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Oliveira Oliveira, M. (2009). Hasse Diagram Generators and Petri Nets. In: Franceschinis, G., Wolf, K. (eds) Applications and Theory of Petri Nets. PETRI NETS 2009. Lecture Notes in Computer Science, vol 5606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02424-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-02424-5_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02423-8
Online ISBN: 978-3-642-02424-5
eBook Packages: Computer ScienceComputer Science (R0)