Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hasse Diagram Generators and Petri Nets

  • Conference paper
Applications and Theory of Petri Nets (PETRI NETS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5606))

Included in the following conference series:

  • 1208 Accesses

Abstract

In [LJ06] Lorenz and Juhás raised the question of whether there exists a suitable formalism for the representation of infinite families of partial orders generated by Petri nets. Restricting ourselves to bounded p/t-nets, we propose Hasse diagram generators as an answer. We show that Hasse diagram generators are expressive enough to represent the partial order language of any bounded p/t net. We prove as well that it is decidable both whether the (possible infinite) family of partial orders represented by a given Hasse diagram generator is included on the partial order language of a given p/t-net and whether their intersection is empty. Based on this decidability result, we prove that the partial order languages of two given Petri nets can be effectively compared with respect to inclusion. Finally we address the synthesis of k-safe p/t-nets from Hasse diagram generators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Bergenthum, R., Desel, J., Juhás, G., Lorenz, R.: Can I execute my scenario in your net? viptool tells you! In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 381–390. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets from scenarios with viptool. In: van Hee, K.M., Valk, R. (eds.) ICATPN 2008. LNCS, vol. 5062, pp. 388–398. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Best, E., Wimmel, H.: Reducing k-safe petri nets to pomset-equivalent 1-safe petri nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 63–82. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Darondeau, P.: Deriving Unbounded Petri Nets from Formal Languages. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 533–548. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Darondeau, P.: Region based synthesis of P/T-nets and its potential applications. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 16–23. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51, 161–166 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  8. Badouel, E., Darondeau, P.: On the synthesis of general petri nets. Technical Report PI-1061, IRISA (November 1996)

    Google Scholar 

  9. Goltz, U., Reisig, W.: Processes of place/transition nets. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 264–277. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  10. Juhás, G., Lorenz, R., Desel, J.: Can I execute my scenario in your net? In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 289–308. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Lorenz, R., Bergenthum, R., Desel, J.: Synthesis of petri nets from infinite partial languages. In: ACSD, pp. 170–179 (2008)

    Google Scholar 

  12. Lorenz, R., Bergenthum, R., Desel, J., Mauser, S.: Synthesis of petri nets from finite partial languages. In: Proceedings of ACSD, pp. 157–166 (2007)

    Google Scholar 

  13. Lorenz, R., Juhás, G.: Towards synthesis of petri nets from scenarios. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 302–321. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Oliveira Oliveira, M. (2009). Hasse Diagram Generators and Petri Nets. In: Franceschinis, G., Wolf, K. (eds) Applications and Theory of Petri Nets. PETRI NETS 2009. Lecture Notes in Computer Science, vol 5606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02424-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02424-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02423-8

  • Online ISBN: 978-3-642-02424-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics