Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Meaning of Coefficients of the Reliability Polynomial for Their Faster Calculation

  • Conference paper
Computational Science and Its Applications – ICCSA 2009 (ICCSA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5593))

Included in the following conference series:

Abstract

We propose some new approaches to the problem of obtaining the reliability polynomial of a random graph. The meaning of coefficients of the reliability polynomial in one of its presentation is used for the significant reducing of calculations while the factoring method underlies. Experiments shows significant speeding up in compare with well known package Maple 11 (up to 2000 times on the standard lattice example).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ayanoglu, E., Chih-Lin, I.: A Method of Computing the Coefficients of the Network Reliability Polynomial. In: GLOBECOM 1989, vol. 1, pp. 331–337. IEEE Press, New York (1989)

    Google Scholar 

  2. Colbourn, C.J.: Some open problems on reliability polynomials. In: Proc. Twentyfourth Southeastern Conf. Combin., Graph Theory Computing, Congr. Numer. 93, pp. 187–202 (1993)

    Google Scholar 

  3. Chari, M., Colbourn, C.J.: Reliability polynomials: a survey. J. Combin. Inform. System Sci. 22, 177–193 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Page, L.B., Perry, J.E.: Reliability Polynomials and Link Importance in Networks. IEEE Transactions on Reliability 43(1), 51–58 (1994)

    Google Scholar 

  5. Kelmans, A.K.: Crossing Properties of Graph Reliability Functions. Journal of Graph Theory 35(9), 206–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colbourn, C.J., Harms, D.D., Myrvold, W.J.: Reliability Polynomials can Cross Twice. Journal of the Franklin Institute 300(3), 627–633 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Cvetkovic, D.M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications, 3rd rev. edn., p. 38. Wiley, New York (1998)

    Google Scholar 

  8. Moore, E.F., Shannon, C.E.: Reliable Circuits Using Less Reliable Relays. J. Franclin Inst. 262(4b), 191–208 (1956)

    Google Scholar 

  9. Shooman, A.M.: Algorithms for Network Reliability and Connection Availability Analysis. In: Electro/1995 Int. Professional Program Proc., pp. 309–336 (1995)

    Google Scholar 

  10. Rodionova, O.K., Rodionov, A.S., Choo, H.: Network Probabilistic Connectivity: Exact Calculation with Use of Chains. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3046, pp. 315–324. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodionov, A., Rodionova, O., Choo, H. (2009). Using Meaning of Coefficients of the Reliability Polynomial for Their Faster Calculation. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2009. ICCSA 2009. Lecture Notes in Computer Science, vol 5593. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02457-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02457-3_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02456-6

  • Online ISBN: 978-3-642-02457-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics