Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Approach to Enhance Convergence Efficiency of Self-propelled Agent System

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

In this paper, we investigate a weighted self-propelled particles system, wherein each agent’s direction is determined by its spatial neighbors’ directions with exponential weights concerning the neighbor numbers. In order to describe the fact that some agent with more neighbors might have much larger influence on its neighbors, we introduce a scaling exponent of the neighbor number between 0 and ∞. As the exponent increases, i.e., the effect of weight becomes stronger, the network of agents becomes much easier to achieve direction consensus in our simulation. Especially, when the exponent equals to 1, the convergence efficiency is enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonabeau, E., Dagorn, L., Fréon, P.: Scaling in animal group-size distributions. Proc. Natl. Acad. Sci. USA 96(48), 4472–4477 (1999)

    Article  Google Scholar 

  2. Lorch, P.D., Gwynne, D.T.: Radio-telemetric evidence of migration in the gregarious but not the solitary morph of the Mormon cricket (Anabrus simplex: Orthoptera: Tettigoniidae). Naturwissenschaften 87(8), 370–372 (2000)

    Article  Google Scholar 

  3. Shaw, E.: The Schooling of Fishes. American Scientist 206, 128–138 (1962)

    Article  Google Scholar 

  4. Flierl, G., Grünbaum, D., Levins, S., Olson, D.: From Individuals to Aggregations: the Interplay between Behavior and Physics. Journal of Theoretical Biology 196(4), 387–454 (1999)

    Article  Google Scholar 

  5. Shaw, E.: Fish in Schools. Natural History 84, 40–46 (1975)

    Google Scholar 

  6. Reynolds, C.: Flocks, herds and schools: a distributed behavioral model. Computer Graphics 21, 25–34 (1987)

    Article  Google Scholar 

  7. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel Type of Phase Transition in a System of Self-Driven Particles. Physical Review Letters 75(6), 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  8. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless senor networks: a survey. Computer Networks 38, 293–341 (2002)

    Article  Google Scholar 

  9. Stipanovic, D.M., Inalhan, G., Teo, R., Tomlin, C.J.: Decentralized Overlapping Control of a Formation of Unmanned Aerial Vehicles. Automatica 40(8), 1285–1296 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Stilwell, D.J., Bishop, B.E.: Platoons of Underwater Vehicles. IEEE Control System Magazine 20(6), 45–52 (2000)

    Article  Google Scholar 

  11. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules. IEEE Trans. on Automatic Control 48(6), 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  12. Ren, W., Beard, R.W.: Consensus Seeking in Multiagent Systems Under Dynamically Changing Interaction Topologies. IEEE Trans. on Automatic Control 50(5), 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  13. Lin, Z., Broucke, M., Francis, B.: Local control strategies for groups of mobile autonomous agents. IEEE Trans. on Automatic Control 49(4), 622–629 (2004)

    Article  MathSciNet  Google Scholar 

  14. Grégoire, G., Chaté, H.: Onset of Collective and Cohesive Motion. Physical Review Letters 92(2), 40–46 (2004)

    Article  Google Scholar 

  15. Huepe, C., Aldana, M.: Intermittency and Clustering in a System of Self-Driven Particles. Physical Review Letters 92(16), 168701–168704 (2004)

    Article  Google Scholar 

  16. Aldana, M., Dossetti, V., Huepe, C., Kenkre, V.M., Larralde, H.: Phase Transitions in Systems of Self-Propelled Agents and Related Network Models. Physical Review Letters 98(9), 095702–168705 (2007)

    Article  Google Scholar 

  17. Nagy, M., Daruka, I., Vicsek, T.: New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion. Physical A 373(9), 445–454 (2007)

    Article  Google Scholar 

  18. Yang, W., Cao, L., Wang, X., Li, X.: Consensus in a heterogeneous influence network. Physical Review E 74(9), 037101–037104 (2006)

    Article  Google Scholar 

  19. Li, W., Wang, X.: Adaptive velocity strategy for swarm aggregation. Physical Review E 75(9), 021917–021923 (2007)

    Article  Google Scholar 

  20. Zhang, J., Zhao, Y., Tiana, B., Penga, L., Zhang, H.-T., Wang, B.-H., Zhou, T.: Accelerating consensus of self-driven swarm via adaptive speed. arXiv:/abs/0711.3896v1 (2007)

    Google Scholar 

  21. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  22. Albert-L szl Barab si, ka Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. András, C., Eugene, S.H., Tamás, V.: Spontaneously ordered motion of self-propelled particles. Physical A 30(9), 1375–1385 (1997)

    Google Scholar 

  24. Reebs, S.G.: Can a minority of informed leaders determine the foraging movements of a fish shoal? Animal Behaviour 59(2), 403–409 (2000)

    Article  Google Scholar 

  25. Swaney, W., Kendal, J., Capon, H., Brown, C., Laland, K.N.: Familiarity facilitates social learning of foraging behaviour in the guppy. Animal Behaviour 63(3), 591–598 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Gao, Jx., Chen, Z., Cai, Yz., Xu, Xm. (2009). An Approach to Enhance Convergence Efficiency of Self-propelled Agent System. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02469-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02469-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02468-9

  • Online ISBN: 978-3-642-02469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics