Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Preliminar Analysis of CO2RBFN in Imbalanced Problems

  • Conference paper
Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5517))

Included in the following conference series:

  • 1721 Accesses

Abstract

In many real classification problems the data are imbalanced, i.e., the number of instances for some classes are much higher than that of the other classes. Solving a classification task using such an imbalanced data-set is difficult due to the bias of the training towards the majority classes. The aim of this contribution is to analyse the performance of CO2RBFN, a cooperative-competitive evolutionary model for the design of RBFNs applied to classification problems on imbalanced domains and to study the cooperation of a well known preprocessing method, the “Synthetic Minority Over-sampling Technique” (SMOTE) with our algorithm. The good performance of CO2RBFN is shown through an experimental study carried out over a large collection of imbalanced data-sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alejo, R., García, V., Sotoca, J.M., Mollineda, R.A., Sánchez, J.S.: Improving the performance of the RBF neural networks trained with imbalanced samples. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 162–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Al-Haddad, L., Morris, C.W., Boddy, L.: Training radial basis function neural networks: effects of training set size and imbalanced training sets. Journal of Microbiological Methods 43, 33–44 (2000)

    Article  Google Scholar 

  3. Barandela, R., Sánchez, J.S., García, V., Rangel, E.: Strategies for learning in class imbalance problems. Pattern Recognition 36(3), 849–851 (2003)

    Article  Google Scholar 

  4. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behaviour of several methods for balancing machine learning training data. SIGKDD Explorations 6(1), 20–29 (2004)

    Article  Google Scholar 

  5. Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex System 2, 321–355 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Buchtala, O., Klimek, M., Sick, B.: Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE T. Syst. Man Cy. B 35(5), 928–947 (2005)

    Article  Google Scholar 

  7. Chawla, N.V., Japkowicz, N., Kolcz, A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 6(1), 1–6 (2004)

    Article  Google Scholar 

  8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of Artificial Intelligent Research 16, 321–357 (2002)

    MATH  Google Scholar 

  9. Chi, Z., Yan, H., Pham, T.: Fuzzy algorithms with applications to image processing and pattern recognition. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  10. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data-sets. Computational Intelligence 20(1), 18–36 (2004)

    Article  MathSciNet  Google Scholar 

  11. Fernández, A., del Jesus, M.J., Herrera, F.: Hierarchical fuzzy rule based classification system with genetic rule selection for imbalanced data-set. International Journal of Approximate Reasoning (2009) doi:10.1016/j.ijar.2008.11.004

    Google Scholar 

  12. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  13. Harpham, C., Dawson, C.W., Brown, M.R.: A review of genetic algorithms applied to training radial basis function networks. Neural Computing and Applications 13, 193–201 (2004)

    Article  Google Scholar 

  14. Huang, S.N., Tan, K.K., Lee, T.H.: Adaptive neural network algorithm for control design of rigid-link electrically driven robots. Neurocomputing 71(4-6), 885–894 (2008)

    Article  Google Scholar 

  15. Ishibuchi, H., Yamamoto, T.: Rule weight specification in fuzzy rule-based classification systems. IEEE Transactions on Fuzzy Systems 13, 428–435 (2005)

    Article  Google Scholar 

  16. Lacerda, E., Carvalho, A., Braga, A., Ludermir, T.: Evolutionary Radial Functions for Credit Assessment. Appl. Intell. 22, 167–181 (2005)

    Article  MATH  Google Scholar 

  17. Maglogiannis, I., Sarimveis, H., Kiranoudis, C.T., Chatziioannou, A.A., Oikonomou, N., Aidinis, V.: Radial basis function neural netwroks classification for the recognition of idiopathic pulmonary fibrosis in microscopic images. IEEE T. Inf. Technol B 12(1), 42–54 (2008)

    Article  Google Scholar 

  18. Mandani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  MATH  Google Scholar 

  19. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Comput. 1, 281–294 (1989)

    Article  Google Scholar 

  20. Murhphey, Y.L., Guo, H.: Neural learning from umbalanced data. Applied Intelligence 21, 117–128 (2004)

    Article  Google Scholar 

  21. Orr, M.J.L.: Regularization on the selection of radial basis function centers. Neural Comput. 7, 606–623 (1995)

    Article  Google Scholar 

  22. Orriols-Puig, A., Bernadó-Mansilla, E.: Evolutionary rule-based systems for imbalanced data-sets. Soft Computing 13(3), 213–225 (2009)

    Article  Google Scholar 

  23. Padmaja, T.M., Dhulipalla, N., Krishna, P.R., Bapi, R.S., Laha, A.: An unbalanced data classification model using hybrid sampling technique for fraud detection. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP 2006. LNCS, vol. 4315, pp. 341–438. Springer, Heidelberg (2008)

    Google Scholar 

  24. Park, J., Sandberg, I.: Universal approximation using radial-basis function networks. Neural Comput. 3, 246–257 (1991)

    Article  Google Scholar 

  25. Pérez-Godoy, M., Rivera, A.J., del Jesus, M.J., Berlanga, F.J.: Utilización de un sistema basado en reglas difusas para la aplicacin de operadores en un algoritmo cooperativo-competitivo. In: ESTYLF 2008, pp. 689–694 (2008)

    Google Scholar 

  26. Quilan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffman Publishers, San Mateo (1993)

    Google Scholar 

  27. Sun, Y.F., Liang, Y.C., Zhang, W.L., Lee, H.P., Lin, W.Z., Cao, L.J.: Optimal partition algorithm of the RBF neural network and its application to financial time series forecasting. Neural Comput. Appl. 143(1), 36–44 (2005)

    Article  Google Scholar 

  28. Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of Radial Basis Function centers and widths for time series predictiont. IEEE Trans. on Neural Networks 7(4), 869–880 (1996)

    Article  Google Scholar 

  29. Widrow, B., Lehr, M.A.: 30 Years of adaptive neural networks: perceptron, madaline and backpropagation. Proceedings of the IEEE 78(9), 1415–1444 (1990)

    Article  Google Scholar 

  30. Xu, L., Chow, M.Y., Taylor, L.S.: Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification e-algorithm. IEEE Transactions on Power Systems 22(1), 164–171 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pérez-Godoy, M.D., Rivera, A.J., Fernández, A., del Jesus, M.J., Herrera, F. (2009). A Preliminar Analysis of CO2RBFN in Imbalanced Problems. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics