Abstract
In many real classification problems the data are imbalanced, i.e., the number of instances for some classes are much higher than that of the other classes. Solving a classification task using such an imbalanced data-set is difficult due to the bias of the training towards the majority classes. The aim of this contribution is to analyse the performance of CO2RBFN, a cooperative-competitive evolutionary model for the design of RBFNs applied to classification problems on imbalanced domains and to study the cooperation of a well known preprocessing method, the “Synthetic Minority Over-sampling Technique” (SMOTE) with our algorithm. The good performance of CO2RBFN is shown through an experimental study carried out over a large collection of imbalanced data-sets.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alejo, R., García, V., Sotoca, J.M., Mollineda, R.A., Sánchez, J.S.: Improving the performance of the RBF neural networks trained with imbalanced samples. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 162–169. Springer, Heidelberg (2007)
Al-Haddad, L., Morris, C.W., Boddy, L.: Training radial basis function neural networks: effects of training set size and imbalanced training sets. Journal of Microbiological Methods 43, 33–44 (2000)
Barandela, R., Sánchez, J.S., García, V., Rangel, E.: Strategies for learning in class imbalance problems. Pattern Recognition 36(3), 849–851 (2003)
Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behaviour of several methods for balancing machine learning training data. SIGKDD Explorations 6(1), 20–29 (2004)
Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex System 2, 321–355 (1988)
Buchtala, O., Klimek, M., Sick, B.: Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE T. Syst. Man Cy. B 35(5), 928–947 (2005)
Chawla, N.V., Japkowicz, N., Kolcz, A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 6(1), 1–6 (2004)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. Journal of Artificial Intelligent Research 16, 321–357 (2002)
Chi, Z., Yan, H., Pham, T.: Fuzzy algorithms with applications to image processing and pattern recognition. World Scientific, Singapore (1996)
Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data-sets. Computational Intelligence 20(1), 18–36 (2004)
Fernández, A., del Jesus, M.J., Herrera, F.: Hierarchical fuzzy rule based classification system with genetic rule selection for imbalanced data-set. International Journal of Approximate Reasoning (2009) doi:10.1016/j.ijar.2008.11.004
Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
Harpham, C., Dawson, C.W., Brown, M.R.: A review of genetic algorithms applied to training radial basis function networks. Neural Computing and Applications 13, 193–201 (2004)
Huang, S.N., Tan, K.K., Lee, T.H.: Adaptive neural network algorithm for control design of rigid-link electrically driven robots. Neurocomputing 71(4-6), 885–894 (2008)
Ishibuchi, H., Yamamoto, T.: Rule weight specification in fuzzy rule-based classification systems. IEEE Transactions on Fuzzy Systems 13, 428–435 (2005)
Lacerda, E., Carvalho, A., Braga, A., Ludermir, T.: Evolutionary Radial Functions for Credit Assessment. Appl. Intell. 22, 167–181 (2005)
Maglogiannis, I., Sarimveis, H., Kiranoudis, C.T., Chatziioannou, A.A., Oikonomou, N., Aidinis, V.: Radial basis function neural netwroks classification for the recognition of idiopathic pulmonary fibrosis in microscopic images. IEEE T. Inf. Technol B 12(1), 42–54 (2008)
Mandani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)
Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Comput. 1, 281–294 (1989)
Murhphey, Y.L., Guo, H.: Neural learning from umbalanced data. Applied Intelligence 21, 117–128 (2004)
Orr, M.J.L.: Regularization on the selection of radial basis function centers. Neural Comput. 7, 606–623 (1995)
Orriols-Puig, A., Bernadó-Mansilla, E.: Evolutionary rule-based systems for imbalanced data-sets. Soft Computing 13(3), 213–225 (2009)
Padmaja, T.M., Dhulipalla, N., Krishna, P.R., Bapi, R.S., Laha, A.: An unbalanced data classification model using hybrid sampling technique for fraud detection. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP 2006. LNCS, vol. 4315, pp. 341–438. Springer, Heidelberg (2008)
Park, J., Sandberg, I.: Universal approximation using radial-basis function networks. Neural Comput. 3, 246–257 (1991)
Pérez-Godoy, M., Rivera, A.J., del Jesus, M.J., Berlanga, F.J.: Utilización de un sistema basado en reglas difusas para la aplicacin de operadores en un algoritmo cooperativo-competitivo. In: ESTYLF 2008, pp. 689–694 (2008)
Quilan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffman Publishers, San Mateo (1993)
Sun, Y.F., Liang, Y.C., Zhang, W.L., Lee, H.P., Lin, W.Z., Cao, L.J.: Optimal partition algorithm of the RBF neural network and its application to financial time series forecasting. Neural Comput. Appl. 143(1), 36–44 (2005)
Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of Radial Basis Function centers and widths for time series predictiont. IEEE Trans. on Neural Networks 7(4), 869–880 (1996)
Widrow, B., Lehr, M.A.: 30 Years of adaptive neural networks: perceptron, madaline and backpropagation. Proceedings of the IEEE 78(9), 1415–1444 (1990)
Xu, L., Chow, M.Y., Taylor, L.S.: Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification e-algorithm. IEEE Transactions on Power Systems 22(1), 164–171 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pérez-Godoy, M.D., Rivera, A.J., Fernández, A., del Jesus, M.J., Herrera, F. (2009). A Preliminar Analysis of CO2RBFN in Imbalanced Problems. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-02478-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02477-1
Online ISBN: 978-3-642-02478-8
eBook Packages: Computer ScienceComputer Science (R0)