Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

In Biomedical research, the ability to retrieve the adequate information from the ever growing literature is an extremely important asset. This work provides an enhanced and general purpose approach to the process of document retrieval that enables the filtering of PubMed query results. The system is based on semantic indexing providing, for each set of retrieved documents, a network that links documents and relevant terms obtained by the annotation of biological entities (e.g. genes or proteins). This network provides distinct user perspectives and allows navigation over documents with similar terms and is also used to assess document relevance. A network learning procedure, based on previous work from e-mail spam filtering, is proposed, receiving as input a training set of manually classified documents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hirschman, L., Yeh, A., Blaschke, C., Valencia, A.: Overview of BioCreAtIvE: critical assessment of information extraction for biology. BMC Bioinformatics 6(suppl.1), S1 (2005)

    Article  Google Scholar 

  2. Hersh, W., Bhupatiraju, R.T., Ross, L., Johnson, P., Cohen, A.M., Kraemer, D.F.: TREC 2004 Genomics Track Overview. In: Proc. 13th Text Retrieval Conference (TREC), pp. 13–31 (2004)

    Google Scholar 

  3. Abi-Haidar, A., Kaur, J., Maguitman, A., Radivojac, P., Retchsteiner, A., Verspoor, K., et al.: Uncovering Protein-Protein Interactions in the Bibliome. Genome Biology, 247–255 (2008)

    Google Scholar 

  4. Sehgal, A.K., Srinivasan, P.: Retrieval with gene queries. BMC Bioinformatics 7 (April 21, 2006)

    Google Scholar 

  5. Wang, P., Morgan, A.A., Zhang, Q., Sette, A., Peters, B.: Automating document classification for the Immune Epitope Database. BMC Bioinformatics 8 (July 26, 2007)

    Google Scholar 

  6. Raychaudhuri, S., Chang, J.T., Sutphin, P.D., Altman, R.B.: Associating genes with gene ontology codes using a maximum entropy analysis of biomedical literature. Genome Research 12(1), 203–214 (2002)

    Article  Google Scholar 

  7. Mostafa, J., Lam, W.: Automatic classification using supervised learning in a medical document filtering application. Information Processing Management 36(3), 415–444 (2000)

    Article  Google Scholar 

  8. Méndez, J.R., Glez-Peña, D., Fdez-Riverola, F., Díaz, F., Corchado, J.M.: Managing irrelevant knowledge in CBR models for unsolicited e-mail classification. Expert Systems with Applications (2008)

    Google Scholar 

  9. Lenz, M., Auriol, E., Manago, M.: Diagnosis and Decision Support. LNCS (LNAI), vol. 1400, pp. 51–90. Springer, Heidelberg (1998)

    Google Scholar 

  10. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proc. 14th International Joint Conference on Artificial Intelligence, pp. 1137–1143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lourenço, A. et al. (2009). Biomedical Text Mining Applied to Document Retrieval and Semantic Indexing. In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_146

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02481-8_146

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02480-1

  • Online ISBN: 978-3-642-02481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics