Abstract
Logistic regression (LR) is a simple and efficient supervised learning algorithm for estimating the probability of an outcome variable. This algorithm is widely accepted and used in medicine for classification of diseases using DNA microarray data. Classical LR does not perform well for microarrays when applied directly, because the number of variables exceeds the number of samples. However, by reducing the number of genes and selecting specific variables (using filtering methods) great results can be obtained with this algorithm. On this contribution we propose a novel approach for fitting the (penalized) LR models based on EDAs. Breast Cancer dataset has been proposed to compare both accuracy and gene selection.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armananzas, R., Inza, I., Santana, R., Saeys, Y., Flores, J.L., Lozano, J.A., Van de Peer, Y., Blanco, R., Robles, V., Bielza, C., Larranaga, P.: A review of estimation of distribution algorithms in bioinformatics. BioData mining 1(1) (September 2008)
Efron, B., Tibshirani, R.: Improvements on cross-validation: The 0.632+ bootstrap method. JASA (92), 548–560 (1997)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, Reading (1989)
Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression, 2nd edn. John Wiley and Sons, New York (2000)
Inza, I., Larrañaga, P.: Learning bayesian networks in the space of structures by estimation of distribution algorithms. International Journal of Intelligent Systems (18), 205–220 (2003)
Inza, I., Larrañaga, P., Etxeberria, R., Sierra, B.: Feature subset selection by bayesian network-based optimization. Artif. Intell. 123(1-2), 157–184 (2000)
Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Combinatonal optimization by learning and simulation of bayesian networks. In: Boutilier, C., Goldszmidt, M. (eds.) UAI, pp. 343–352. Morgan Kaufmann, San Francisco (2000)
Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publisher, Dordrecht (2002)
Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E.: Towards a New Evolutionary Computation. In: Advances in the Estimation of Distribution Algorithms. Springer, Heidelberg (2006)
Minka, T.P.: A comparison of numerical optimizers for logistic regression. Technical report, Carnegie Mellon University (2003)
Ng, A., Jordan, M.: On discriminative versus generative classifiers: A comparison of logistic regression and naive bayes. In: Proceedings of NIPS, vol. 14, pp. 605–610 (2001)
Quackenbush, J.: Microarray data normalization and transformation - nature genetics
Romero, T., Larrañaga, P., Sierra, B.: Learning bayesian networks in the space of orderings with estimation of distribution algorithms. International Journal of Pattern Recognition and Artificial Intelligence 4(18), 607–625 (2004)
Shen, L., Tan, E.C.: Dimension reduction-based penalized logistic regression for cancer classification using microarray data. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2(2), 166–175 (2005)
Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for dna microarrays. Bioinformatics 17(6), 520–525 (2001)
van ’t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530–536 (2002)
Verleysen, M., François, D.: The curse of dimensionality in data mining and time series prediction. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 758–770. Springer, Heidelberg (2005)
Vinterbo, S., Ohno-Machado, L.: A genetic algorithm to select variables in logistic regression: Example in the domain of myocardial infarction. In: Proceedings of the AMIA Symposium, pp. 984–988 (1999)
Winker, P., Gilli, M.: Applications of optimization heuristics to estimation and modelling problems. Computational Statistics and Data Analysis (47), 211–223 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
González, S., Robles, V., Peña, J.M., Cubo, O. (2009). EDA-Based Logistic Regression Applied to Biomarkers Selection in Breast Cancer. In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_149
Download citation
DOI: https://doi.org/10.1007/978-3-642-02481-8_149
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02480-1
Online ISBN: 978-3-642-02481-8
eBook Packages: Computer ScienceComputer Science (R0)