Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Intensity and Size Invariant Real Time Face Recognition Approach

  • Conference paper
Image Analysis and Recognition (ICIAR 2009)

Abstract

This paper proposes an intensity and size invariant real time computer vision-based face recognition approach. With this method, human facial area(s) are first detected automatically from real-time captured images. The images are then normalized using histogram equalization and contrast stretching. Finally face is recognized using eigenfaces method. This proposed method is camera to face distance invariant as well as intensity invariant. The effectiveness of this method was demonstrated using both static and dynamic images. The average precision and recall rate achieved by the proposed method is above 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rizvi, S.A., Phillips, P.J., Moon, H.: A verification protocol and statistical performance analysis for face recognition algorithms. In: IEEE Proc. Conf. Computer Vision and Pattern Recognition (CVPR), Santa Barbara, pp. 833–838 (1998)

    Google Scholar 

  2. Chellappa, R., Wilson, C.L., Sirohey, S.: Human and Machine Recognition of Faces: A Survey. Proceedings of the IEEE 83(5) (1995)

    Google Scholar 

  3. Goldstein, A.J., Harmon, L.D., Lesk, A.B.: Identification of human faces. Proc. IEEE 59, 748–760 (1971)

    Article  Google Scholar 

  4. Haig, N.K.: How faces differ - a new comparative technique. Perception 14, 601–615 (1985)

    Article  Google Scholar 

  5. Rhodes, G.: Looking at faces: First-order and second order features as determinants of facial appearance. Perception 17, 43–63 (1988)

    Article  Google Scholar 

  6. Bledsoe, W.W.: The model method in facial recognition. In: CAPRI, vol. 15, Panoramic Research, Inc., Palo Alto (1966)

    Google Scholar 

  7. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A literature Survey. Technical Report, Univ. of Maryland (2000)

    Google Scholar 

  8. Sirovich, L., Kirby, M.: Low-dimensional Procedure for the Characterization of Human Faces. Journal of the Optical Society of America 4(3), 519–524 (1987)

    Article  Google Scholar 

  9. Terzopoulos, D., Waters, K.: Analysis of facial images using physical and anatomical models. In: Proc. 3rd Int. Conf. on Computer Vision, pp. 727–732 (1990)

    Google Scholar 

  10. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sabrin, K.M. et al. (2009). An Intensity and Size Invariant Real Time Face Recognition Approach. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02611-9_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02610-2

  • Online ISBN: 978-3-642-02611-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics