Abstract
In recent years communication protocols have shown an increasing complexity – especially by considering the number of variable parameters. As the performance of the communication protocol strongly depends on the configuration of the protocol system, an optimal parameter set is needed to ensure the best possible system behaviour. This choice does not have a static character as the environment changes over time and the influencing factors of the optimisation are varying. Due to this dynamic environment an adaptation depending on the current situation on the particular node within a communication network is needed. This paper introduces an Organic Network Control system which is able to cover this task and it also demonstrates the strengths of the proposed approach by applying the system to a Peer-to-Peer protocol and evaluating the achieved results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schmeck, H.: Organic Computing – A new vision for distributed embedded systems. In: Proceedings of the 8th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2005), pp. 201–203 (2005)
Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer 36(1), 41–50 (2003)
Branke, J., Mnif, M., Müller-Schloer, C., Prothmann, H., Richter, U., Rochner, F., Schmeck, H.: Organic Computing – Addressing complexity by controlled self-organization. In: Proc. of the 2nd Intern. Symp. on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2006), pp. 185–191 (2006)
Prothmann, H., Rochner, F., Tomforde, S., Branke, J., Müller-Schloer, C., Schmeck, H.: Organic control of traffic lights. In: Rong, C., Jaatun, M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 219–233. Springer, Heidelberg (2008)
Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computation 2(1), 1–18 (1994)
Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)
Web: The Network Simulator - NS/2, http://www.isi.edu/nsnam/ns/
Cohen, B.: Incentives Build Robustness in BitTorrent. In: Proceedings of the 1st Workshop on Economics of Peer-to-Peer Systems, Berkeley (2003)
Kunz, T.: Multicasting in mobile ad-hoc networks: achieving high packet delivery ratios. In: CASCON 2003: Proc. of the 2003 conference of the Centre for Advanced Studies on Collaborative research, Toronto, Canada, pp. 156–170. IBM Press (2003)
Montana, D., Redi, J.: Optimizing parameters of a mobile ad hoc network protocol with a genetic algorithm. In: GECCO 2005: Proc. of the 2005 conference on Genetic and evolutionary computation, pp. 1993–1998. ACM, New York (2005)
Sözer, E.M., Stojanovic, M., Proakis, J.G.: Initialization and routing optimization for ad-hoc underwater acoustic networks. In: Proceedings of Opnetwork 2000 (2000)
Turgut, D., Daz, S., Elmasri, R., Turgut, B.: Optimizing clustering algorithm in mobile ad hoc networks using genetic algorithmic approach. In: Proc. of the IEEE Global Telecommunications Conference (GLOBECOM 2002), pp. 62–66 (2002)
Ye, T., Kalyanaraman, S.: An adaptive random search algorithm for optimizing network protocol parameters. Technical report, Rensselaer Polytechnic Inst. (2001)
Ye, T., Harrison, D., Mo, B., Sikdar, B., Kaur, H.T., Kalyanaraman, S., Szymanski, B., Vastola, K.: Network Management and Control Using Collaborative On-line Simulation. In: Proceedings of IEEE ICC, Helsinki, Finland. IEEE, Los Alamitos (2001)
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Computing Series, vol. 2. Springer, Berlin (2003)
Bäck, T., Schwefel, H.P.: Evolutionary computing: An overview. In: Proceedings of IEEE Conference of Evolutionary Computing (1996)
Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149–175 (1995)
Tomforde, S., Brammer, F., Hoffmann, M., Hähner, J.: POWEA: A system for automated network protocol parameter optimisation using evolutionary algorithms (2009) (submitted for publication)
Eger, K., Hofeld, T., Binzenhöfer, A., Kunzmann, G.: Efficient simulation of large-scale p2p networks: Packet-level vs. flow-level simulations. In: 2nd Workshop on the Use of P2P, GRID and Agents for the Development of Content Networks (UPGRADE-CN 2007), Monterey Bay, USA, pp. 9–16 (2007)
Eger, K.: Simulation of BitTorrent Peer-to-Peer Networks in ns-2, http://www.tu-harburg.de/et6/research/bittorrentsim/index.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tomforde, S., Steffen, M., Hähner, J., Müller-Schloer, C. (2009). Towards an Organic Network Control System. In: González Nieto, J., Reif, W., Wang, G., Indulska, J. (eds) Autonomic and Trusted Computing. ATC 2009. Lecture Notes in Computer Science, vol 5586. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02704-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-02704-8_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02703-1
Online ISBN: 978-3-642-02704-8
eBook Packages: Computer ScienceComputer Science (R0)