Abstract
In this paper, we explore face detection and face recognition algorithms for ubiquitous computing environment. We develop algorithms for application programming interface (API) suitable for embedded system. The basic requirements include appropriate data format and collection of feature data to achieve efficiency of algorithm. Our experiment presents a face detection and face recognition algorithm for handheld devices. The essential part for proposed system includes; integer representation from floating point calculation, optimization of memory management scheme and efficient face detection performance on complex background scene.
Chapter PDF
Similar content being viewed by others
Keywords
References
Papatheodorou, T., Rueckert, D.: Evaluation of 3D Face Recognition Using Registration and PCA. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 997–1009. Springer, Heidelberg (2005)
Tusk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3, 71–86 (1991)
Moon, H., Phillips, P.: Computational and Performance Aspects of PCA-Based Face-Recognition Algorithms. Perception 30, 303–321 (2001)
Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression Database. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1615–1618 (2003)
Phillips, P., Moon, H., Rauss, P.: The FERET Evaluation Methodology for Face Recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, pp. 511–518 (2001)
Viola, P., Jones, M.: Robust Real-time Object Detection. In: Second International Workshop on Statistical and Computational Theories of Vision, July 13 (2001)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3, 71–86 (1991)
Yambor, W.S.: Analysis of PCA-based and Fisher Discriminant-based Image Recognition Algorithms. Technical report, CSU (June 2000)
FERET Database. NIST (2001), http://www.itl.nist.gov/iad/humanid/feret/
XM2VTS Database, http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/
Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression Database. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1615–1618 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jeong, K., Hong, S., Joo, I., Lee, J., Moon, H. (2009). Face Recognition Technology for Ubiquitous Computing Environment. In: Stephanidis, C. (eds) Universal Access in Human-Computer Interaction. Intelligent and Ubiquitous Interaction Environments. UAHCI 2009. Lecture Notes in Computer Science, vol 5615. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02710-9_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-02710-9_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02709-3
Online ISBN: 978-3-642-02710-9
eBook Packages: Computer ScienceComputer Science (R0)