Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Crucial Words for Abelian Powers

  • Conference paper
Developments in Language Theory (DLT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5583))

Included in the following conference series:

Abstract

Let k ≥ 2 be an integer. An abelian k -th power is a word of the form X 1 X 2 ⋯ X k where X i is a permutation of X 1 for 2 ≤ i ≤ k. In this paper, we consider crucial words for abelian k-th powers, i.e., finite words that avoid abelian k-th powers, but which cannot be extended to the right by any letter of their own alphabets without creating an abelian k-th power. More specifically, we consider the problem of determining the minimal length of a crucial word avoiding abelian k-th powers. This problem has already been solved for abelian squares by Evdokimov and Kitaev [6], who showed that a minimal crucial word over an n-letter alphabet \({\mathcal{A}}_n = \{1,2,\ldots, n\}\) avoiding abelian squares has length 4n − 7 for n ≥ 3. Extending this result, we prove that a minimal crucial word over \({\mathcal{A}}_n\) avoiding abelian cubes has length 9n − 13 for n ≥ 5, and it has length 2, 5, 11, and 20 for n = 1,2,3, and 4, respectively. Moreover, for n ≥ 4 and k ≥ 2, we give a construction of length k 2(n − 1) − k − 1 of a crucial word over \({\mathcal{A}}_n\) avoiding abelian k-th powers. This construction gives the minimal length for k = 2 and k = 3.

The first and third authors were supported by the Icelandic Research Fund (grant nos. 09003801/1 and 060005012/3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bullock, E.M.: Improved bounds on the length of maximal abelian square-free words. Electron. J. Combin. 11, #R17 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Carpi, A.: On the number of abelian square-free words on four letters. Discrete Appl. Math. 81, 155–167 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cummings, L.J., Mays, M.: A one-sided Zimin construction. Electron. J. Combin. 8, #R27 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Erdős, P.: Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6, 221–254 (1961)

    MathSciNet  MATH  Google Scholar 

  5. Evdokimov, A.A.: Strongly asymmetric sequences generated by a finite number of symbols. Dokl. Akad. Nauk SSSR 179, 1268–1271 (1968); Soviet Math. Dokl. 9, 536–539 (1968)

    Google Scholar 

  6. Evdokimov, A.A., Kitaev, S.: Crucial words and the complexity of some extremal problems for sets of prohibited words. J. Combin. Theory Ser. A 105, 273–289 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  8. Korn, M.: Maximal abelian square-free words of short length. J. Combin. Theory Ser. A 102, 207–211 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pleasants, P.A.B.: Non-repetitive sequences. Proc. Cambridge Philos. Soc. 68, 267–274 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zimin, A.: Blocking sets of terms. Mat. Sb (N.S.) 119 (161), 363–375, 447 (1982); Math. USSR Sbornik 47 353–364 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glen, A., Halldórsson, B.V., Kitaev, S. (2009). Crucial Words for Abelian Powers. In: Diekert, V., Nowotka, D. (eds) Developments in Language Theory. DLT 2009. Lecture Notes in Computer Science, vol 5583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02737-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02737-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02736-9

  • Online ISBN: 978-3-642-02737-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics