Abstract
Restart strategies are an important factor in the performance of conflict-driven Davis Putnam style SAT solvers. Selecting a good restart strategy for a problem instance can enhance the performance of a solver. Inspired by recent success applying machine learning techniques to predict the runtime of SAT solvers, we present a method which uses machine learning to boost solver performance through a smart selection of the restart strategy. Based on easy to compute features, we train both a satisfiability classifier and runtime models. We use these models to choose between restart strategies. We present experimental results comparing this technique with the most commonly used restart strategies. Our results demonstrate that machine learning is effective in improving solver performance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biere, A.: Adaptive Restart Strategies for Conflict Driven SAT Solvers. In: Proc. of the 11th Int. Conf. on Theory and Applications of Satisfiability Testing (2008)
Biere, A.: PicoSAT Essentials. Journal on Satisfiability, Boolean Modeling and Computation 4, 75–97 (2008)
Bregman, D., Mitchell, D.: The SAT solver MXC (version 0.75). Solver Description for the SAT Race 2008 solver competition (2008)
Devlin, D., O’Sullivan, B.: Satisfiability as a Classification Problem. In: Proc. of the 19th Irish Conf. on Artificial Intelligence and Cognitive Science (2008)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. of the 6th Int. Conf. on Theory and Applications of Satisfiability Testing (2003)
Eibach, T., Pilz, E., Völkel, G.: Attacking Bivium Using Using SAT Solvers. In: Proc. of the 11th Int. Conf. on Theory and Applications of Satisfiability Testing (2008)
Frost, D., Rish, I.: Summarizing CSP hardness with continuous probability distributions. In: Proc. of the 14th National Conf. on Artificial Intelligence (1997)
Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proc. of Design Automation and Test in Europe (2002)
Gomes, C.P., Selman, B., Kautz, H.: Boosting Combinatorial Search through Randomization. In: Proc. of the 15th National Conf. on Artificial Intelligence (1998)
Haim, S., Walsh, T.: Online Estimation of SAT Solving Runtime. In: Proc. of the 11th Int. Conf. on Theory and Applications of Satisfiability Testing (2008)
Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (2007)
Huang, J.: A Case for Simple SAT Solvers. In: Proc. of the 13th Int. Conf. on Principles and Practice of Constraint Programming (2007)
Hutter, F., Hamadi, Y., Hoos, H., Leyton-Brown, K.: Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms. In: Proc. of the 12th Int. Conf. on Principles and Practice of Constraint Programming (2006)
Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic Restart Policies. In: Proc. of the 18th National Conf. on Artificial Intelligence (2002)
Krishnapuram, B., Figueiredo, M., Carin, L., Hartemink, A.: Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 957–968 (2005)
Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. In: Proc. of the 2nd Israel Symp. on the Theory and Computing Systems (1993)
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proc. of the 38th Design Automation Conference (2001)
Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Understanding Random SAT: Beyond the Clauses-to-Variables Ratio. In: Wallace, M. (ed.) CP 2004, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)
Ruan, Y., Horvitz, E., Kautz, H.: Restart Policies with Dependence among Runs: A Dynamic Programming Approach. In: Van Hentenryck, P. (ed.) CP 2002, vol. 2470, p. 573. Springer, Heidelberg (2002)
Ruan, Y., Horvitz, E., Kautz, H.: Hardness-aware restart policies. In: The 18th Int. Joint Conference on Artificial Intelligence: Workshop on Stochastic Search (2003)
Ryan, L.: Efficient algorithms for clause learning SAT solvers. Master thesis, Simon Fraser University, School of Computing Science (2004)
Ryvchin, V., Strichman, O.: Local Restarts. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 271–276. Springer, Heidelberg (2008)
Walsh, T.: Search in a Small World. In: Proc. of the 12th Int. Joint Conference on Artificial Intelligence (1999)
Wu, H., van Beek, P.: On Universal Restart Strategies for Backtracking Search. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 681–695. Springer, Heidelberg (2007)
Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)
Xu, L., Hoos, H., Leyton-Brown, K.: Hierarchical Hardness Models for SAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 696–711. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haim, S., Walsh, T. (2009). Restart Strategy Selection Using Machine Learning Techniques. In: Kullmann, O. (eds) Theory and Applications of Satisfiability Testing - SAT 2009. SAT 2009. Lecture Notes in Computer Science, vol 5584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02777-2_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-02777-2_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02776-5
Online ISBN: 978-3-642-02777-2
eBook Packages: Computer ScienceComputer Science (R0)