Abstract
We propose a syscall-based anomaly detection system that incorporates both deterministic and stochastic models. We analyze in detail two alternative approaches for anomaly detection over system call sequences and arguments, and propose a number of modifications that significantly improve their performance. We begin by comparing them and analyzing their respective performance in terms of detection accuracy. Then, we outline their major shortcomings, and propose various changes in the models that can address them: we show how targeted modifications of their anomaly models, as opposed to the redesign of the global system, can noticeably improve the overall detection accuracy. Finally, the impact of these modifications are discussed by comparing the performance of the two original implementations with two modified versions complemented with our models.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls. Journal of Computer Security 6(3), 151–180 (1998)
Bhatkar, S., Chaturvedi, A., Sekar, R.: Dataflow anomaly detection. In: IEEE Symposium on Security and Privacy, May 2006, pp. 15–62 (May 2006)
Maggi, F., Matteucci, M., Zanero, S.: Detecting intrusions through system call sequence and argument analysis. IEEE Transactions on Dependable and Secure Computing (accepted for publication)
Sharif, M.I., Singh, K., Giffin, J.T., Lee, W.: Understanding precision in host based intrusion detection. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 21–41. Springer, Heidelberg (2007)
Zanero, S.: Unsupervised Learning Algorithms for Intrusion Detection. PhD thesis, Politecnico di Milano T.U., Milano, Italy (May 2006)
Han, J., Kamber, M.: Data Mining: concepts and techniques. Morgan-Kauffman, San Francisco (2000)
Cabrera, J.B.D., Lewis, L., Mehara, R.: Detection and classification of intrusion and faults using sequences of system calls. ACM SIGMOD Record 30(4) (2001)
Casas-Garriga, G., DÃaz, P., Balcázar, J.: ISSA: An integrated system for sequence analysis. Technical Report DELIS-TR-0103, Universitat Paderborn (2005)
Ourston, D., Matzner, S., Stump, W., Hopkins, B.: Applications of hidden markov models to detecting multi-stage network attacks. In: HICSS, p. 334 (2003)
Jha, S., Tan, K., Maxion, R.A.: Markov chains, classifiers, and intrusion detection. In: Proceedings of the 14th IEEE Workshop on Computer Security Foundations (CSFW 2001), Washington, DC, USA, June 2001, pp. 206–219. IEEE Computer Society Press, Los Alamitos (2001)
Joanes, D., Gill, C.: Comparing Measures of Sample Skewness and Kurtosis. The Statistician 47(1), 183–189 (1998)
Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate Record Detection: A Survey. IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)
Somervuo, P.J.: Online algorithm for the self-organizing map of symbol strings. Neural Netw. 17(8-9), 1231–1239 (2004)
Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomputing 21(1-3), 19–30 (1998)
Zanero, S.: Flaws and frauds in the evaluation of IDS/IPS technologies. In: Proc. of FIRST 2007 - Forum of Incident Response and Security Teams, Sevilla, Spain (June 2007)
Maggi, F., Zanero, S., Iozzo, V.: Seeing the invisible - forensic uses of anomaly detection and machine learning. ACM Operating Systems Review (April 2008)
Bace, R.G.: Intrusion detection. Macmillan Publishing Co., Inc., Indianapolis (2000)
Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for Unix processes. In: Proceedings of the 1996 IEEE Symposium on Security and Privacy, Washington, DC, USA. IEEE Computer Society, Los Alamitos (1996)
Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: SP 1994: Proceedings of the 1994 IEEE Symposium on Security and Privacy, Washington, DC, USA, p. 202. IEEE Computer Society, Los Alamitos (1994)
Somayaji, A., Forrest, S.: Automated response using system–call delays. In: Proceedings of the 9th USENIX Security Symposium, Denver, CO (August 2000)
Michael, C.C., Ghosh, A.: Simple, state-based approaches to program-based anomaly detection. ACM Trans. Inf. Syst. Secur. 5(3), 203–237 (2002)
Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method for detecting anomalous program behaviors. In: Proceedings of the 2001 IEEE Symposium on Security and Privacy, Washington, DC, USA. IEEE Computer Society Press, Los Alamitos (2001)
Wagner, D., Dean, D.: Intrusion detection via static analysis. In: SP 2001: Proceedings of the 2001 IEEE Symposium on Security and Privacy, Washington, DC, USA, pp. 156–168. IEEE Computer Society Press, Los Alamitos (2001)
Giffin, J.T., Dagon, D., Jha, S., Lee, W., Miller, B.P.: Environment-sensitive intrusion detection. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 185–206. Springer, Heidelberg (2006)
Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly detection using call stack information. In: Proceedings. 2003 Symposium on Security and Privacy, 2003, May 11-14, pp. 62–75 (2003)
Warrender, C., Forrest, S., Pearlmutter, B.A.: Detecting intrusions using system calls: Alternative data models. In: IEEE Symposium on Security and Privacy, pp. 133–145 (1999)
Jha, S., Tan, K., Maxion, R.A.: Markov chains, classifiers, and intrusion detection. In: CSFW 2001: Proceedings of the 14th IEEE Workshop on Computer Security Foundations, pp. 206–219. IEEE Computer Society, Washington (2001)
Yeung, D.Y., Ding, Y.: Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognition 36, 229–243 (2003)
Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems. In: CCS 2002: Proceedings of the 9th ACM conference on Computer and communications security, pp. 255–264. ACM, New York (2002)
Krügel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of anomalous system call arguments. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 326–343. Springer, Heidelberg (2003)
Tandon, G., Chan, P.: Learning rules from system call arguments and sequences for anomaly detection. In: ICDM Workshop on Data Mining for Computer Security (DMSEC), pp. 20–29 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Frossi, A., Maggi, F., Rizzo, G.L., Zanero, S. (2009). Selecting and Improving System Call Models for Anomaly Detection. In: Flegel, U., Bruschi, D. (eds) Detection of Intrusions and Malware, and Vulnerability Assessment. DIMVA 2009. Lecture Notes in Computer Science, vol 5587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02918-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-02918-9_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02917-2
Online ISBN: 978-3-642-02918-9
eBook Packages: Computer ScienceComputer Science (R0)