Abstract
We consider a model for online computation in which the online algorithm receives, together with each request, some information regarding the future, referred to as advice. The advice provided to the online algorithm may allow an improvement in its performance, compared to the classical model of complete lack of information regarding the future. We are interested in the impact of such advice on the competitive ratio, and in particular, in the relation between the size b of the advice, measured in terms of bits of information per request, and the (improved) competitive ratio. Since b = 0 corresponds to the classical online model, and \( b = \lceil \log |\mathcal{A}| \rceil \), where \(\mathcal{A}\) is the algorithm’s action space, corresponds to the optimal (offline) one, our model spans a spectrum of settings ranging from classical online algorithms to offline ones.
In this paper we propose the above model and illustrate its applicability by considering two of the most extensively studied online problems, namely, metrical task systems (MTS) and the k-server problem. For MTS we establish tight (up to constant factors) upper and lower bounds on the competitive ratio of deterministic and randomized online algorithms with advice for any choice of 1 ≤ b ≤ Θ(logn) , where n is the number of states in the system: we prove that any randomized online algorithm for MTS has competitive ratio Ω( log(n) / b) and we present a deterministic online algorithm for MTS with competitive ratio O (log(n) / b) . For the k-server problem we construct a deterministic online algorithm for general metric spaces with competitive ratio k O (1 / b) for any choice of Θ(1) ≤ b ≤ logk .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albers, S.: A competitive analysis of the list update problem with lookahead. Theor. Comput. Sci. 197(1–2), 95–109 (1998)
Bartal, Y., Bollobás, B., Mendel, M.: Ramsey-type theorems for metric spaces with applications to online problems. J. Comput. Syst. Sci. 72, 890–921 (2006)
Bartal, Y., Mendel, M., Linial, N., Naor, A.: On metric Ramsey-type phenomena. Annals of Mathematics 162, 643–710 (2005)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)
Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. In: STOC, pp. 249–259 (1991)
Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task system. J. ACM 39, 745–763 (1992)
Breslauer, D.: On competitive on-line paging with lookahead. Theor. Comput. Sci. 209(1-2), 365–375 (1998)
Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 335–346. Springer, Heidelberg (2005)
Chrobak, M., Larmore, L.L.: The server problem and on-line games. In: On-line algorithms: Proc. of a DIMACS Workshop. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 7, pp. 11–64 (1991)
Dobrev, S., Královič, R., Pardubská, D.: How much information about the future is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer, Heidelberg (2008)
Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: On the additive constant of the k-server work function algorithm. A manuscript, http://arxiv.org/abs/0902.1378v1
Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69, 485–497 (2004)
Fiat, A., Karlin, A.: Randomized and multipointer paging with locality of reference. In: STOC, pp. 626–634 (1995)
Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and applications. SIAM J. Comput. 32, 1403–1422 (2003)
Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with advice: information sensitivity of graph coloring. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Heidelberg (2007)
Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation with short advice. In: SPAA, pp. 154–160 (2007)
Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for communication tasks. In: PODC, pp. 179–187 (2006)
Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with an oracle. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 24–37. Springer, Heidelberg (2006)
Grove, E.F.: Online bin packing with lookahead. In: SODA, pp. 430–436 (1995)
Fusco, E.G., Pelc, A.: Trade-offs between the size of advice and broadcasting time in trees. In: SPAA (2008)
Irani, S., Seiden, S.S.: Randomized algorithms for metrical task systems. Theor. Comput. Sci. 194, 163–182 (1998)
Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. In: PODC, pp. 26–34 (2006)
Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. In: PODC, pp. 9–18 (2005)
Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture. J. ACM 42(5), 971–983 (1995)
Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server problems. Journal of Algorithms 11, 208–230 (1990)
Nisse, N., Soguet, D.: Graph searching with advice. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 51–65. Springer, Heidelberg (2007)
Peleg, D.: Informative labeling schemes for graphs. Theor. Comput. Sci. 340(3), 577–593 (2005)
Thorup, M., Zwick, U.: Approximate distance oracles. In: STOC, pp. 183–192 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Emek, Y., Fraigniaud, P., Korman, A., Rosén, A. (2009). Online Computation with Advice. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02927-1_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-02927-1_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02926-4
Online ISBN: 978-3-642-02927-1
eBook Packages: Computer ScienceComputer Science (R0)