Abstract
The IEEE standardized Property Specification Language, PSL for short, extends the well-known linear-time temporal logic LTL with so-called semi-extended regular expressions. PSL and the closely related SystemVerilog Assertions, SVA for short, are increasingly used in many phases of the hardware design cycle, from specification to verification. In this paper, we extend the common core of these specification languages with past operators. We name this extension RTL. Although all ω-regular properties are expressible in PSL, SVA, and RTL, past operators often allow one to specify properties more naturally and concisely. In fact, we show that RTL is exponentially more succinct than the cores of PSL and SVA. Furthermore, we present a translation of RTL into language-equivalent nondeterministic Büchi automata, which is based on novel constructions for 2-way alternating automata. Our translation has almost the same worst-case complexity in terms of the size of the resulting nondeterministic Büchi automata as the existing translations for PSL and SVA. Consequently, the satisfiability and the model-checking problem for RTL fall into the same complexity classes as the corresponding problems for PSL and SVA. From the translation it also follows that the blowup of translating RTL formulas into initially equivalent PSL/SVA formulas is at most triply exponential.
Partly supported by the Swiss National Science Foundation (SNF).
Due to space limitations, most proofs have been omitted. These can be found in an extended version of the paper, which is available from the authors’ webpages.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
IEEE standard for Property Specification Language (PSL). IEEE Std 1850TM (October 2005)
IEEE standard for SystemVerilog—unified hardware design, specification, and verification language. IEEE Std 1800TM (November 2005)
Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec temporal logic: A new temporal property-specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidelberg (2002)
Banieqbal, B., Barringer, H.: Temporal logic with fixed points. In: Banieqbal, B., Pnueli, A., Barringer, H. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 62–74. Springer, Heidelberg (1989)
Ben-David, S., Bloem, R., Fisman, D., Griesmayer, A., Pill, I., Ruah, S.: Automata construction algorithms optimized for PSL. Technical report, The Prosyd Project (2005), http://www.prosyd.org
Bloem, R., Cimatti, A., Pill, I., Roveri, M.: Symbolic implementation of alternating automata. Int. J. Found. Comput. Sci. 18(4), 727–743 (2007)
Bustan, D., Havlicek, J.: Some complexity results for SytemVerilog assertions. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 205–218. Springer, Heidelberg (2006)
Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)
Cimatti, A., Roveri, M., Semprini, S., Tonetta, S.: From PSL to NBA: A modular symbolic encoding. In: FMCAD 2006, pp. 125–133. IEEE Computer Society Press, Los Alamitos (2006)
Cimatti, A., Roveri, M., Sheridan, D.: Bounded verification of Past LTL. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 245–259. Springer, Heidelberg (2004)
Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking. Form. Method. Syst. Des. 10(1), 47–71 (1997)
Dax, C., Klaedtke, F.: Alternation elimination by complementation. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS, vol. 5330, pp. 214–229. Springer, Heidelberg (2008)
Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics in simple cases. Inf. Comput. 174(1), 84–103 (2002)
Gastin, P., Oddoux, D.: LTL with past and two-way very-weak alternating automata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 439–448. Springer, Heidelberg (2003)
Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
Kupferman, O., Piterman, N., Vardi, M.Y.: Extended temporal logic revisited. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 519–535. Springer, Heidelberg (2001)
Lange, M.: Linear time logics around PSL: Complexity, expressiveness, and a little bit of succinctness. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 90–104. Springer, Heidelberg (2007)
Lange, M.: A purely model-theoretic proof of the exponential succinctness gap between CTL + and CTL. Inform. Process. Lett. 108(5), 308–312 (2008)
Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past. In: LICS 2002, pp. 383–392. IEEE Computer Society Press, Los Alamitos (2002)
Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)
Markey, N.: Temporal logic with past is exponentially more succinct. Bulletin of the EATCS 79, 122–128 (2003)
Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theoret. Comput. Sci. 32(3), 321–330 (1984)
Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE Computer Society Press, Los Alamitos (1977)
Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586. Springer, Heidelberg (2006)
Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata. Inform. Process. Lett. 30(5), 261–264 (1989)
Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996)
Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS 1986, pp. 332–344. IEEE Computer Society Press, Los Alamitos (1986)
Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1/2), 72–99 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dax, C., Klaedtke, F., Lange, M. (2009). On Regular Temporal Logics with Past,. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds) Automata, Languages and Programming. ICALP 2009. Lecture Notes in Computer Science, vol 5556. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02930-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-02930-1_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02929-5
Online ISBN: 978-3-642-02930-1
eBook Packages: Computer ScienceComputer Science (R0)