Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Temporal Data Mining of HIV Registries: Results from a 25 Years Follow-Up

  • Conference paper
Artificial Intelligence in Medicine (AIME 2009)

Abstract

The Human Immunodeficiency Virus (HIV) causes a pandemic infection in humans, with millions of people infected every year. Although the Highly Active Antiretroviral Therapy reduced the number of AIDS cases since 1996 by significantly increasing the disease-free survival time, the therapy failure rate is still high due to HIV treatment complexity. To better understand the changes in the outcomes of HIV patients we have applied temporal data mining techniques to the analysis of the data collected since 1981 by the Infectious Diseases Unit of the Hospital Clínic in Barcelona, Spain. We run a precedence temporal rule extraction algorithm on three different temporal periods, looking for two types of treatment failures: viral failure and toxic failure, corresponding to events of clinical interest to assess the treatment outcomes. The analysis allowed to extract different typical patterns related to each period and to meaningfully interpret the previous and current behaviour of HIV therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Miners, A.H., Sabin, C.A., Mocroft, A., et al.: Health-Related Quality of Life in Individuals Infected with HIV in the Era of HAART. HIV clinical trials 2, 484–492 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Hays, R.D., Cunningham, W.E., Sherbourne, C.D., et al.: Health-Related Quality of Life in Patients with Human Immunodeficiency Virus Infection in the United States: Results from the HIV Cost and Services Utilization Study. The American Journal of Medicine 108, 714–722 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Draghici, S., Potter, R.B.: Predicting HIV Drug Resistance with Neural Networks. Bioinformatics 19, 98–107 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. Srisawat, A., Kijsirikul, B.: Combining Classifiers for HIV-1 Drug Resistance Prediction. Protein Pept. Lett. 15, 435–442 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Ramirez, J.C., Cook, D.J., Peterson, L.L., et al.: Temporal Pattern Discovery in Course-of-Disease Data. IEEE Engineering in Medicine and Biology Magazine 19, 63–71 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. Ying, H., Lin, F., MacArthur, R.D., et al.: A Fuzzy Discrete Event System Approach to Determining Optimal HIV/AIDS Treatment Regimens. IEEE Transactions on Information Technology in Biomedicine 10, 663–676 (2006)

    Article  PubMed  Google Scholar 

  7. Post, A.R., Harrison Jr., J.H.: Temporal Data Mining. Clin. Lab. Med. 28, 83–100 (2008)

    Article  PubMed  Google Scholar 

  8. Raj, R., O’Connor, M.J., Das, A.K.: An Ontology-Driven Method for Hierarchical Mining of Temporal Patterns: Application to HIV Drug Resistance

    Google Scholar 

  9. Shahar, Y.: A framework for knowledge-based temporal abstraction. Artificial Intelligence 90, 79–133 (1997)

    Article  Google Scholar 

  10. Sacchi, L., Larizza, C., Combi, C., et al.: Data Mining with Temporal Abstractions: Learning Rules from Time Series. Data Mining and Knowledge Discovery 15, 217–247 (2007)

    Article  Google Scholar 

  11. Bellazzi, R., Larizza, C., Magni, P., et al.: Temporal Data Mining for the Quality Assessment of Hemodialysis Services. Artificial Intelligence in Medicine 34, 25–39 (2005)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chausa, P. et al. (2009). Temporal Data Mining of HIV Registries: Results from a 25 Years Follow-Up. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds) Artificial Intelligence in Medicine. AIME 2009. Lecture Notes in Computer Science(), vol 5651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02976-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02976-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02975-2

  • Online ISBN: 978-3-642-02976-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics