Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Implementation of the MLP Kernel

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5507))

Included in the following conference series:

Abstract

This paper presents a MLP kernel. It maps all patterns in a class into a single point in the output layer space and maps different classes into different points. These widely separated class points can be used for further classifications. It is a layered feed-forward network. Each layer is trained using the class differences and trained independently layer after layer using a bottom-up construction. The class labels are not used in the training process. It can be used in separating multiple classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, New York, NY, USA, pp. 144–152 (1992)

    Google Scholar 

  2. Chang, C.-C., Lin, C.-J.: LIBSVM: a Library for Support Vector Machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

  3. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annual Eugenics, Part II 7, 179–188 (1936)

    Article  Google Scholar 

  4. Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43, 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liou, C.-Y., Yu, W.-J.: Initializing the Weights in Multilayer Network with Quadratic Sigmoid Function. In: Proceedings of International Conference on Neural Information Processing, pp. 1387–1392 (1994)

    Google Scholar 

  6. Liou, C.-Y., Yu, W.-J.: Ambiguous Binary Representation in Multilayer Neural Network. In: Proceedings of ICNN, vol. 1, pp. 379–384 (1995)

    Google Scholar 

  7. Liou, C.-Y., Chen, H.T., Huang, J.C.: Separation of Internal Representations of the Hidden Layer. In: Proceedings of the International Computer Symposium, pp. 26–34 (2000)

    Google Scholar 

  8. Liou, C.-Y., Cheng, W.-C.: Resolving Hidden Representations. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 254–263. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Little, M.A., McSharry, P.E., Roberts, S.J., Costello, D.A.E., Moroz, I.M.: Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection. BioMedical Engineering OnLine 6, 23 (2007)

    Article  Google Scholar 

  10. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  11. Wolberg, W.H., Mangasarian, O.L.: Multisurface Method of Pattern Separation for Medical Diagnosis Applied to Breast Cytology. In: Proceedings of the National Academy of Sciences, vol. 87, pp. 9193–9196 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liou, CY., Cheng, WC. (2009). Implementation of the MLP Kernel. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03040-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03040-6_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03039-0

  • Online ISBN: 978-3-642-03040-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics