Abstract
This paper presents a MLP kernel. It maps all patterns in a class into a single point in the output layer space and maps different classes into different points. These widely separated class points can be used for further classifications. It is a layered feed-forward network. Each layer is trained using the class differences and trained independently layer after layer using a bottom-up construction. The class labels are not used in the training process. It can be used in separating multiple classes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, New York, NY, USA, pp. 144–152 (1992)
Chang, C.-C., Lin, C.-J.: LIBSVM: a Library for Support Vector Machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annual Eugenics, Part II 7, 179–188 (1936)
Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43, 59–69 (1982)
Liou, C.-Y., Yu, W.-J.: Initializing the Weights in Multilayer Network with Quadratic Sigmoid Function. In: Proceedings of International Conference on Neural Information Processing, pp. 1387–1392 (1994)
Liou, C.-Y., Yu, W.-J.: Ambiguous Binary Representation in Multilayer Neural Network. In: Proceedings of ICNN, vol. 1, pp. 379–384 (1995)
Liou, C.-Y., Chen, H.T., Huang, J.C.: Separation of Internal Representations of the Hidden Layer. In: Proceedings of the International Computer Symposium, pp. 26–34 (2000)
Liou, C.-Y., Cheng, W.-C.: Resolving Hidden Representations. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 254–263. Springer, Heidelberg (2008)
Little, M.A., McSharry, P.E., Roberts, S.J., Costello, D.A.E., Moroz, I.M.: Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection. BioMedical Engineering OnLine 6, 23 (2007)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)
Wolberg, W.H., Mangasarian, O.L.: Multisurface Method of Pattern Separation for Medical Diagnosis Applied to Breast Cytology. In: Proceedings of the National Academy of Sciences, vol. 87, pp. 9193–9196 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liou, CY., Cheng, WC. (2009). Implementation of the MLP Kernel. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03040-6_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-03040-6_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03039-0
Online ISBN: 978-3-642-03040-6
eBook Packages: Computer ScienceComputer Science (R0)