Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Decidability of Sub-theories of Polynomials over a Finite Field

  • Conference paper
Mathematical Theory and Computational Practice (CiE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5635))

Included in the following conference series:

Abstract

Let \({\mathbb{F}}_q\) be a finite field with q elements. We produce an (effective) elimination of quantifiers for the structure of the set of polynomials, \({\mathbb{F}}_q[t]\), of one variable, in the language which contains symbols for addition, multiplication by t, inequalities of degrees, divisibility of degrees by a positive integer and, for each \(d\in{\mathbb{F}}_q[t]\), a symbol for divisibility by d. We discuss the possibility of extending our results to the structure which results if one includes a predicate for the relation “x is a power of t”.

Supported by the Trimester Program on Diophantine Equations, January - April 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Denef, J.: The diophantine problem for polynomial rings and fields of rational functions. Transactions of the American Mathematical Society 242, 391–399 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Denef, J.: The diophantine problem for polynomial rings of positive characteristic, Logic Colloquium, vol. 78, pp. 131–145. North Holland, Amsterdam (1984)

    Google Scholar 

  3. Lipshitz, L.: The diophantine problem for addition and divisibility. Transactions of the American Mathematical Society 235, 271–283 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pheidas, T.: Extensions of Hilbert’s Tenth Problem. The Journal of Symbolic Logic 59(2), 372–397 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pheidas, T., Zahidi, K.: Undecidability of existential theories of rings and fields: A survey. Contemporary Mathematics 270, 49–106 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pheidas, T., Zahidi, K.: Elimination theory for addition and the Frobenius map in polynomial rings. The Journal of Symbolic Logic 69(4), 1006–1026 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pheidas, T., Zahidi, K.: Analogues of Hilbert’s tenth problem. In: Chatzidakis, Z., Macpherson, D., Pillay, A., Wilkie, A. (eds.) Model theory with Applications to Algebra and Analysis. London Math Soc. Lecture Note Series, Nr. 350, vol. 2, pp. 207–236 (2008)

    Google Scholar 

  8. Poonen, B.: Undecidability in Number Theory. Notices A.M.S. 55(3), 344–350 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Robinson, R.: Undecidable rings. Transactions of the American Mathematical Society 70, 137–159 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  10. Semenov, A.: Logical theories of one-place functions on the set of natural numbers. Math. USSR Izvestija 22, 587–618 (1984)

    Article  MATH  Google Scholar 

  11. Semenov, A.: On the definability of arithmetic in its fragments. Soviet Math. Dokl. 25, 300–303 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sirokofskich, A. (2009). Decidability of Sub-theories of Polynomials over a Finite Field. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds) Mathematical Theory and Computational Practice. CiE 2009. Lecture Notes in Computer Science, vol 5635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03073-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03073-4_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03072-7

  • Online ISBN: 978-3-642-03073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics