Abstract
We express some criticism about the definition of an algorithmic sufficient statistic and, in particular, of an algorithmic minimal sufficient statistic. We propose another definition, which might have better properties.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Antunes, L., Fortnow, L.: Sophistication revisited. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 267–277. Springer, Heidelberg (2003)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)
Gács, P., Tromp, J., Vitányi, P.M.B.: Algorithmic statistics. IEEE Trans. Inform. Th. 47(6), 2443–2463 (2001)
Kolmogorov, A.N.: Talk at the Information Theory Symposium in Tallinn, Estonia (1974)
Shen, A.K.: Discussion on Kolmogorov complexity and statistical analysis. The Computer Journal 42(4), 340–342 (1999)
Shen, A.K.: Personal communication (2002)
Vereshchagin, N.K., Vitányi, P.M.B.: Kolmogorov’s structure functions and model selection. IEEE Trans. Information Theory 50(12), 3265–3290 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vereshchagin, N. (2009). Algorithmic Minimal Sufficient Statistic Revisited. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds) Mathematical Theory and Computational Practice. CiE 2009. Lecture Notes in Computer Science, vol 5635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03073-4_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-03073-4_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03072-7
Online ISBN: 978-3-642-03073-4
eBook Packages: Computer ScienceComputer Science (R0)