Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Discovery of Migration Habitats and Routes of Wild Bird Species by Clustering and Association Analysis

  • Conference paper
Advanced Data Mining and Applications (ADMA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5678))

Included in the following conference series:

Abstract

Knowledge about the wetland use of migratory bird species during the annual life circle is very interesting to biologists, as it is critically important for conservation site construction and avian influenza control. The raw data of the habitat areas and the migration routes can be determined by high-tech GPS satellite telemetry, that usually are large scale with high complexity. In this paper, we convert these biological problems into computational studies, and introduce efficient algorithms for the data analysis. Our key idea is the concept of hierarchical clustering for migration habitat localization, and the notion of association rules for the discovery of migration routes. One of our clustering results is the Spatial-Tree, an illusive map which depicts the home range of bar-headed geese. A related result to this observation is an association pattern that reveals a high possibility of bar-headed geeseā€™s potential migration routes. Both of them are of biological novelty and meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, J., et al.: Highly pathogenic H5N1 influenza virus infection in migratory birds. ScienceĀ 309, 1206 (2005)

    ArticleĀ  Google ScholarĀ 

  2. Li, Z.W.D., Mundkur, T.: Numbers and distribution of waterbirds and wetlands in the Asia-Pacific region: results of the Asian Waterbird Census 2002ā€“2004. Wetlands International, Kuala Lumpur (2007)

    Google ScholarĀ 

  3. Worton, B.J.: kernel methods for estimating the utilization distribution in home-range studies. EcologyĀ 70, 164ā€“168 (1989)

    ArticleĀ  Google ScholarĀ 

  4. Kanai, Y., et al.: Discovery of breeding grounds of a Siberian Crane Grus leucogeranus flock that winter sin Iran, via satellite telemetry. Bird Conservation InternationalĀ 12, 327ā€“333 (2002)

    ArticleĀ  Google ScholarĀ 

  5. Mathevet, R., Tamisier, A.: Creation of a nature reserve, its effects on hunting management and waterfowl distribution in the Camargue (southern France). Biodiv. Conserv.Ā 11, 509ā€“519 (2002)

    ArticleĀ  Google ScholarĀ 

  6. Shimazaki, H., et al.: Migration routes and important stopover sites of endangered oriental white storks (Ciconia boyciana) as revealed by satellite tracking

    Google ScholarĀ 

  7. Ball, G.H., Hall, D.J.: ISODATA: a novel method of data analysis and pattern classification. Technical Report of Stanford Research Institute, Menlo Park, CA, Stanford Research Institute, 66 (1965)

    Google ScholarĀ 

  8. Ester, M., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, Portland, OR, pp. 226ā€“231 (1996)

    Google ScholarĀ 

  9. Ester, M., Kriegel, H., Sander, J., Xu, X.: Incremental Clustering for Mining in a Data Warehousing Environment VLDB (1998)

    Google ScholarĀ 

  10. Ng, R.T., Han, J.: Efficient and Effective Clustering Methods for Spatial Data Mining. In: Proc. 20th Int. Conf. on Very Large Data Bases, Santiago, Chile, pp. 144ā€“155 (1994)

    Google ScholarĀ 

  11. Ertƶz, L., Steinbach, M., Kumar, V.: Finding topics in collections of documents: A shared nearest neighbor approach. In: Proceedings of Text Mine 2001, First SIAM International Conference on Data Mining, Chicago, IL,USA (2001)

    Google ScholarĀ 

  12. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons, Inc., New York (1990)

    BookĀ  MATHĀ  Google ScholarĀ 

  13. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. of the 20th VLDB Conference (1994)

    Google ScholarĀ 

  14. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: A frequent-pattern tree approach. International Journal of Data Mining and Knowledge DiscoveryĀ 8(1), 53ā€“87 (2004)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  15. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the 11th International Conference on Data Engineering (ICDE 1995) Taipei, Taipei, Taiwan, pp. 3ā€“14 (1995)

    Google ScholarĀ 

  16. Zaki, M.J.: Efficient Enumeration of Frequent Sequences. In: 7th International Conference on Information and Knowledge Management, Washington DC, November 1998, pp. 68ā€“75 (1998)

    Google ScholarĀ 

  17. Koperski, K., Han, J.: Discovery of Spatial Association Rules in Geographic Information Databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol.Ā 951, pp. 47ā€“66. Springer, Heidelberg (1995)

    ChapterĀ  Google ScholarĀ 

  18. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H.: Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 2001 International Conference on Data Engineering (ICDE 2001), pp. 214ā€“224 (2001)

    Google ScholarĀ 

  19. Muzaffar, S.B., Johny, T.: Seasonal movements and migration of Pallasā€™s Gulls Larus ichthyaetus from Qinghai Lake, China. ForktailĀ 24, 100ā€“107 (2008)

    Google ScholarĀ 

  20. Miyabayashi, Y., Mundkur, T.: Atlas of key sites for Anatidae in the East Asian Flyway. Wetlands Internationalā€”AsiaPacific, Tokyo: Japan, and Kuala Lumpur, Malaysia (1999), http://www.jawgp.org/anet/aaa1999/aaaendx.htm (accessed March 11, 2008)

    Google ScholarĀ 

  21. Shan, G.H., JunYu, L., QiYing, L.: Introduction to ACM international Collegiate Programming Contest, 2nd edn., pp. 100ā€“102 (in Chinese)

    Google ScholarĀ 

  22. Weisstein, E.W.: Spherical Polygon. From MathWorldā€“A Wolfram Web Resource, http://mathworld.wolfram.com/SphericalPolygon.html

  23. Daniel Sheldon, M.A.: Saleh Elmohamed, Dexter Kozen. In: Collective Inference on Markov Models for Model Appendix: Springer-Author Discount

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tang, M. et al. (2009). Discovery of Migration Habitats and Routes of Wild Bird Species by Clustering and Association Analysis. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng, X., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2009. Lecture Notes in Computer Science(), vol 5678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03348-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03348-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03347-6

  • Online ISBN: 978-3-642-03348-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics