Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5486))

Included in the following conference series:

  • 318 Accesses

Abstract

Reo is an exogenous coordination model for software components. The informal semantics of Reo has been matched by several proposals of formalization, exploiting co-algebraic techniques, constraint-automata, and coloring tables. We aim to show that the Tile Model offers a flexible and adequate semantic setting for Reo, such that: (i) it is able to capture context-aware behavior; (ii) it is equipped with a natural notion of behavioral equivalence which is compositional; (iii) it offers a uniform setting for representing not only the ordinary execution of Reo systems but also dynamic reconfiguration strategies.

Research supported by the project FET-GC II IST-2005-16004 Sensoria, by the Italian FIRB project TOCAI, by the Dutch NWO project n. 612.000.316 C-Quattro, and by the bilateral German-Dutch DFG-NWO project n. 600.643.000.05N12 SYANCO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arbab, F.: Reo: A channel-based coordination model for component composition. Math. Struct. in Comput. Sci. 14(3), 1–38 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program 61(2), 75–113 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theoret. Comput. Sci. 366(1-2), 98–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and context dependency. Sci. Comput. Program 66(3), 205–225 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corradini, A., Montanari, U.: An algebraic semantics for structured transition systems and its application to logic programs. Theoret. Comput. Sci. 103, 51–106 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. CWI. Reo home page, http://reo.project.cwi.nl

  8. CWI. A repository of Reo connectors, http://homepages.cwi.nl/~proenca/webreo/

  9. Gadducci, F., Montanar, U.: The tile model. In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 133–166. MIT Press, Cambridge (2000)

    Google Scholar 

  10. Koehler, C., Arbab, F., de Vink, E.: Reconfiguring Distributed Reo Connectors. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 221–235. Springer, Heidelberg (2009)

    Google Scholar 

  11. Koehler, C., Costa, D., Proença, J., Arbab, F.: Reconfiguration of Reo connectors triggered by dataflow. In: Ermel, C., Heckel, R., de Lara, J. (eds.) Proceedings of GT-VMT 2008. Elect. Communic. of the European Association of Software Science and Technology, vol. 10, pp. 1–13. EASST (2008)

    Google Scholar 

  12. Koehler, C., Lazovik, A., Arbab, F.: Connector rewriting with high-level replacement systems. In: Canal, C., Poizat, P., Viroli, M. (eds.) Proceedings of FOCLASA 2007. Elect. Notes in Th. Comput. Sci. Elsevier Science, Amsterdam (2007)

    Google Scholar 

  13. Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 526–539. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  14. MacLane, S.: Categories for the working mathematician. Springer, Heidelberg (1971)

    MATH  Google Scholar 

  15. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96, 73–155 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Montanari, U., Rossi, F.: Graph rewriting, constraint solving and tiles for coordinating distributed systems. Applied Categorical Structures 7(4), 333–370 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-61, 17–139 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U. (2009). Tiles for Reo . In: Corradini, A., Montanari, U. (eds) Recent Trends in Algebraic Development Techniques. WADT 2008. Lecture Notes in Computer Science, vol 5486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03429-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03429-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03428-2

  • Online ISBN: 978-3-642-03429-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics